In this research, we studied the structural and optical properties of In2O3 films which prepared by chemical spray pyrolysis method on the glass substrate heated 400 . The effect of annealing temperature 100 for one hour on theses properties are studied. The result of Xray diffraction showed the prepared films were polycrystalline and orientation was (222) before and after annealing, optical properties study for prepared films by using (UV-VIS-NIR) spectrophotometer in the wave length range (300-1100)nm, We found the transmission increases after annealing to 90%. Sensitivity measurement of In2O3 films for gas (CO) and optical detector showed that after annealing at temperature 100 .
Films of pure Poly (methyl methacrylate) PMMA and Iron chromate doped PMMA have been prepared using casting method. Transmission and absorptance spectra have been recorded in the wavelength range (300-900) nm, in order to calculate, single oscillator energy, dispersion energy proposed by Wemple - DiDomenico model, average oscillator strength, average oscillator wavelength. The refractive index data at infinite wavelength which was found to obey single oscillator model which was found to increase from 2.27-2.56 as the doping percentage increase. The decreasing in the optical energy gap which was found according to Tauc model were (3.74-3.63) eV , is in good agreement with that obtained by wimple-DiDomenico model. The inverse behavior comp
... Show MoreThe influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show MoreThe influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increase films thickness was fond to increase the electrical conductivity whereas the activation energy (Ea) would vary with f
... Show MoreATTAPULGITE clay was modified in this study by the graphene oxide sheets and the clay was diagnosed before and after modification using several techniques (Fourier-transform infrared spectroscopy FT-IR, X-ray powder diffraction XRD, Scanning electron microscope SEM , energy dispersive spectroscopy EDX ) ,The surface of the attapulgite clay (before (Ata) after modification by graphene oxide (Ata-GO) ) was applied to adsorption of the Alizarin dye from its water solutions through the application of several kinetic models (pseudo first-order model , pseudo second -order model , intraparticle diffusion model ),It was found that the practical results follow pseudo second -order model. The process of modification on the surface of the mud has imp
... Show MoreUtilizing first principles calculations within PW91 exchange-correlation method, we investigated a boron sheet that exhibits related electronic properties. The 2-dimensional boron sheet is flattened and has an atomic structure where the pair cores of every three ordered hexagons within the hexagonal network are loaded up by extra atoms, which saves the triangular lattice symmetry. The boron sheet takes possession of intrinsic metal properties and the electronic bands are comparable to the bands of the graphene that are close to the Fermi level. The real and imaginary parts of the dielectric function show a metallic or semiconductor behaviour, depending on the electric field direction.
Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and study the characterization of a relative humidity sensor based on a polymer-infiltrated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) reflection mode. The fabrication of the sensor only involves splicing and cleaving Photonic Crystal Fiber (PCF) with Single Mode Fiber (SMF). A stub of (LMA-10) PCF spliced to SMF (Corning-28). In the splice regions. The PCFI sensor operation based on the adsorption and desorption of water vapour at the silica-air interface within the PCF. The sensor shows a high sensitivity to RH variations from (27% RH - 95% RH), with a change in its reflected powe
... Show MorePhotonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o
... Show MorePolyaniline polymer has been prepared by chemical oxidation
polymerization method in laboratory successfully. The PANI and
(PVA+PVP) as a polymer blends in different percentage (30%, 50%,
70%) from Polyaniline was prepared. The sample was studies as
optical properties by UV-vis spectrophotometer at (400-700) nm.
The result of optical energy gap was 2.23 eV for pure (PVA+ PVP)
and with additive was increasing with increasing PANI concentration
to become (2.49 for 30% to 2.52 for 70%) PANI. The goal of this
project is prepare triple blend polymer and study the effect when add
conductive polymer (Polyaniline) on the optical properties and
calculate optical constant as energy gap, refractive index, dielectric
A set of hydro treating experiments are carried out on vacuum gas oil in a trickle bed reactor to study the hydrodesulfurization and hydrodenitrogenation based on two model compounds, carbazole (non-basic nitrogen compound) and acridine (basic nitrogen compound), which are added at 0–200 ppm to the tested oil, and dibenzotiophene is used as a sulfur model compound at 3,000 ppm over commercial CoMo/ Al2O3 and prepared PtMo/Al2O3. The impregnation method is used to prepare (0.5% Pt) PtMo/Al2O3. The basic sites are found to be very small, and the two catalysts exhibit good metal support interaction. In the absence of nitrogen compounds over the tested catalysts in the trickle bed reactor at temperatures of 523 to 573 K, liquid hourly space v
... Show MoreIn this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sa
... Show More