Preferred Language
Articles
/
jih-697
Modified Thompson –Type Testimators for the Parameters of Simple Linear Regression Model
...Show More Authors

 Dens itiad ns vcovadoay fnre Dec2isco0D,ia asrn2trcds4 fenve ns 6ocfo ts ida%n2notd, rasr sedno6t(a asrn2trcd fnre sc2a 2cynwnvtrnco co nrs wcd2 /nt sedno6t(a fan(er wtvrcd ﯿ)ﺔ mh         Dens r,ia cw asrn2trcds et/a laao vcosnyaday wcd asrn2trno( rea itdt2arads ﻘ cw sn2i%a %noatd da(dassnco 2cya%4 feao t idncd asrn2tra cw rea itdt2arad /t%ua )ﻘm ns t/tn%tl%a4 st, ﻘxh Dens ﻘx ets laao dawadday no srtrnsrnvt% %nradtrudas ts (uass icnor tlcur rea itdt2arad ﻘh         Dea aMidassncos wcd Snts4 Oato -9utday 8ddcd )O-8m toy .a%trn/a 8wwnvnaov, cw rea idcicsay asrn2trcds tda clrtnoayh 1u2adnvt% dasu%rs tda idc/nyay feao rea idcicsay asrn2trcds tda rasrn2trcds cw %a/a% cw sn(onwnvtova ﺒh 5c2itdnscos fnre rea usut% )3h-hOm toy aMnsrno( asrn2trcds fada 2tya rc secf rea usawu%oass cw rea idcicsay asrn2trcds no rea saosa cw .a%trn/a 8wwnvnaov, toy Oato -9utday 8ddcdh

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Estimation of Parameters for the Gumbel Type-I Distribution under Type-II Censoring Scheme
...Show More Authors

This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jan 02 2021
Journal Name
The International Journal Of Nonlinear Analysis And Application
Atan regularized for the high dimensional Poisson regression model
...Show More Authors

Variable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.

View Publication Preview PDF
Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
The use of the Biz method and classical methods in estimating the parameters of the binary logistic regression model
...Show More Authors

Abstract

          Binary logistic regression model used in data classification and it is the strongest most flexible tool in study cases variable response binary when compared to linear regression. In this research, some classic methods were used to estimate parameters binary logistic regression model, included the maximum likelihood method, minimum chi-square method, weighted least squares, with bayes estimation , to choose the best method of estimation by default values to estimate parameters according two different models of general linear regression models ,and different s

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 29 2022
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
The Use Of Genetic Algorithm In Estimating The Parameter Of Finite Mixture Of Linear Regression
...Show More Authors

The estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To

... Show More
View Publication
Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Journal Of Engineering And Applied Sciences
Comparison of Estimate Methods of Multiple Linear Regression Model with Auto-Correlated Errors when the Error Distributed with General Logistic
...Show More Authors

In this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending

Scopus (1)
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
The effect of losing one view of the independent variableAnd its location in simple regression analysis
...Show More Authors

The objective of the research , is to shed light on the most important treatment of the problem of missing values of time series data and its influence in simple linear regression. This research deals with the effect of the missing values in independent variable only. This was carried out by proposing missing value from time series data which is complete originally and testing the influence of the missing value on simple regression analysis of data of an experiment related with the effect of the quantity of consumed ration on broilers weight for 15 weeks. The results showed that the missing value had not a significant effect as the estimated model after missing value was consistent and significant statistically. The results also

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the method of partial least squares and the algorithm of singular values decomposion to estimate the parameters of the logistic regression model in the case of the problem of linear multiplicity by using the simulation
...Show More Authors

The logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables.                                                        The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.    

... Show More
View Publication Preview PDF
Crossref