The purpose of this paper is to study new types of open sets in bitopological spaces. We shall introduce the concepts of L- pre-open and L-semi-p-open sets
In this paper, new concepts of maximal and minimal regular s are introduced and discussed. Some basic properties are obtained. The relation between maximal and minimal regular s and some other types of open sets such as regular open sets and -open sets are investigated.
In this work the concept of semi-generalized regular topological space was introduced and studied via semi generalized open sets. Many properties and results was investigated and studied, also it was shown that the quotient space of semi-generalized regular topological space is not, in general semi-generalizedspace.
The objective of this paper is to define and introduce a new type of nano semi-open set which called nano -open set as a strong form of nano semi-open set which is related to nano closed sets in nano topological spaces. In this paper, we find all forms of the family of nano -open sets in term of upper and lower approximations of sets and we can easily find nano -open sets and they are a gate to more study. Several types of nano open sets are known, so we study relationship between the nano -open sets with the other known types of nano open sets in nano topological spaces. The Operators such as nano -interior and nano -closure are the part of this paper.
This paper aims to define and study new separation axioms based on the b-open sets in topological ordered spaces, namely strong - -ordered spaces ( ). These new separation axioms are lying between strong -ordered spaces and - - spaces ( ). The implications of these new separation axioms among themselves and other existing types are studied, giving several examples and counterexamples. Also, several properties of these spaces are investigated; for example, we show that the property of strong - -ordered spaces ( ) is an inherited property under open subspaces.
In this paper, we offer and study a novel type generalized soft-open sets in topological spaces, named soft Æ„c-open sets. Relationships of this set with other types of generalized soft-open sets are discussed, definitions of soft Æ„ , soft bc- closure and soft bc- interior are introduced, and its properties are investigated. Also, we introduce and explore several characterizations and properties of this type of sets.
The operator ψ has been introduced as an associated set-valued set function. Although it has importance for the study of minimal open sets as well as minimal I-open sets. As a result of this study, we introduce minimal I^*-open sets . In this study, several characterizations of minimal I^*-open sets are also investigated. This study also discusses the role of minimal I^*-open sets in the *-locally finite spaces. In an aspect of topological invariant, the homeomorphic images of minimal I^*-open set has been discussed here.
In the present paper, new concepts of generalized continuous mappings, namely Еc and δ-ßc-continuous mappings have been introduced and studied by using a new generalized of open sets Еc and δ-ßc-open sets ,respectively. Several characterizations and fundamental properties of these forms of generalized continuous mappings are obtained. Moreover, the graphs of Еc-continuous and δ-ßc-continuous mappings have been investigated. In addition, the relationships among Еc-continuous and δ-ßc-continuous mappings and other well-known forms of g
... Show MoreIn this paper, we introduce and study new classes of soft open sets in soft bitopological spaces called soft (1,2)*-omega open sets and weak forms of soft (1,2)*-omega open sets such as soft (1,2)*-α-ω-open sets, soft (1,2)*-pre-ω-opensets, soft (1,2)*-b-ω-open sets, and soft (1,2)*-β-ω-open sets. Moreover; some basic properties and the relation among these concepts and other concepts also have been studied.
In this work, we present the notion of sp[γ,γ^(* ) ]-open set, sp[γ,γ^(* ) ]-closed, and sp[γ,γ^(* ) ]-closure such that several properties are obtained. By using this concept, we define a new type of spaces named sp[γ,γ^(* ) ]-compact space.
The purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.