In this paper, we study the effect of group homomorphism on the chain of level subgroups of fuzzy groups. We prove a necessary and sufficient conditions under which the chains of level subgroups of homomorphic images of an a arbitrary fuzzy group can be obtained from that of the fuzzy groups . Also, we find the chains of level subgroups of homomorphic images and pre-images of arbitrary fuzzy groups
Let G be a finite group and X be a conjugacy class of order 3 in G. In this paper, we introduce a new type of graphs, namely A4-graph of G, as a simple graph denoted by A4(G,X) which has X as a vertex set. Two vertices, x and y, are adjacent if and only if x≠y and x y-1=y x-1. General properties of the A4-graph as well as the structure of A4(G,X) when G@ 3D4(2) will be studied.
Collaborative learning in class‐based teaching presents a challenge for a tutor to ensure every group and individual student has the best learning experience. We present Group Tagging, a web application that supports reflection on collaborative, group‐based classroom activities. Group Tagging provides students with an opportunity to record important moments within the class‐based group work and enables reflection on and promotion of professional skills such as communication, collaboration and critical thinking. After class, students use the tagged clips to create short videos showcasing their group work activities, which can later be reviewed by the teacher. We report on a deployment of Group Tagging in an undergraduate Computing Scie
... Show MoreThe study of homomorphisms in cubic sets is considered one of the important concepts that transfer algebraic properties between different structures, so we study a homomorphism of a cubic set of a semigroup in a KU-algebra and defined the product of two cubic sets in this structure. Firstly, we define the image and the inverse image of a cubic set in a KU-semigroup and achieve some results in this notion. Secondly, the Cartesian product of cubic subsets in a KU-semigroup is discussed and some important characteristics are proved.
In this paper, we introduce and study the essential and closed fuzzy submodules of a fuzzy module X as a generalization of the notions of essential and closed submodules. We prove many basic properties of both concepts.
In this paper, we use the definition of the action on the set of semi-group of the structure of this research .We introduce the concepts of -system which is a triple , , such that is a Hausdorff compact space called phase space, is a semi-group of transformations with a continuous action of on . We study and proof some theoretical properties related with that system. We also introduce the concept of Enfolding semi-group ( , ,and we prove that it is a compact right topological semi-group. In addition, we study the left and right ideals in the Enfolding semi-group. By using the dynamical system, we reflect various properties concerning with its structure for the Enfolding semi-group. Furthermore, we describe
... Show MoreIn this paper, we show that each soft topological group is a strong small soft loop transfer space at the identity element. This indicates that the soft quasitopological fundamental group of a soft connected and locally soft path connected space, is a soft topological group.
In this paper we tend to describe the notions of intuitionistic fuzzy asly ideal of ring indicated by (I. F.ASLY) ideal and, we will explore some properties and connections about this concept.
Zadah in [1] introduced the notion of a fuzzy subset A of a nonempty set S as a mapping from S into [0,1], Liu in [2] introduced the concept of a fuzzy ring, Martines [3] introduced the notion of a fuzzy ideal of a fuzzy ring. A non zero proper ideal I of a ring R is called an essential ideal if I  J  (0), for any non zero ideal J of R, [4]. Inaam in [5] fuzzified this concept to essential fuzzy ideal of fuzzy ring and gave its basic properties. Nada in [6] introduced and studied notion of semiessential ideal in a ring R, where a non zero i
... Show MoreIn this paper we used Hosoya polynomial ofgroupgraphs Z1,...,Z26 after representing each group as graph and using Dihedral group to"encrypt the plain texts with the immersion property which provided Hosoya polynomial to immerse the cipher text in another"cipher text to become very"difficult to solve.