The formation of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)-complexes (C1-C5) respectively was studied with new Schiff base ligand [benzyl(2-hydroxy-1-naphthalidene) hydrazine carbodithioate derived from reaction of 2-hydroxy-1-naphthaldehyde and benzyl hydrazine carbodithioate. The suggested structures of the ligand and its complexes have been determined by using C.H.N.S analyzer, thermal analysis, FT-IR, U.V-Visible, 1HNMR, 13CNMR , conductivity measurement , magnetic susceptibility and atomic absorption. According to these studies, the ligand coordinates as a tridentate with metal ions through nitrogen atom of azomethane , oxygen atom of hydroxyl, and sulfur atom of thione and the ratio of ligand to metal (M:L) as (1:2) all the complexes were octahedral except copper-complex was distorted octahedral.
A new mixed ligand complexes have been prepared between 8- hydroxy quinoline and o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on with Mn(II),Fe(II),Co(II),Ni(II) and Cu(II) ions . the prepared complexes were isolated and characterized by (FT-IR)and (UV-Vis) spectroscopy. Elemental analysis (C.H.N) Flame atomic absorption technique . in addition to magnetic susceptibility and conductivity measurement.
The ligand 2-Hydroxy-N-pyridin-2-ylmethyl-acetamide(L) has been prepared from reaction of 2-(aminomethyl)pyridin with chloroacetic acid (1:1).It has been characterized by elemental analysis (C,H,N) ,'H, 13 C-NMR, IR and electronic spectra. The complexes of divalent (Co,Ni,Cu,Zn,Cd and Hg) ions and trivalent(Cr) ion have been synthesized and characterized by IR, electronic spectra, molar conductivity, atomic absorption and molar ratio (Ni 2+) complex. The analytical studies for the complexes show; octahedral for (Cr 3+),square planar for (Cu 2+) and (Co,Ni Zn, Cd and Hg) tetrahedral geometries. The study of biological activity of the ligand (L) and its complexes (Co,Ni,Cu,Cd,Hg) in two deferent concentration (1and5) mg/ml showed various acti
... Show MoreWe can summarize the main risk factors for type 2 diabetes mellitus (T2DM) by looking at our nutrition, age, and lifestyle. β-cell dysfunction and insulin resistance (IR) are outcomes of the pathophysiology of type 2 diabetes. As an indirect result of IR on important metabolic enzymes, lipid and lipoprotein abnormalities are also a factor in T2DM patients. Recent research has indicated that lipid fluctuation may be the cause of poor glucose metabolism as well as one of its effects. Fatty acids (FAs) affect cell membrane fluidity and permeability, insulin receptor binding and signaling, and the translocation of glucose transporters. Therefore, it is suggested that FAs might play a crucial part in the emergence of IR and T2DM. The cu
... Show MoreWe can summarize the main risk factors for type 2 diabetes mellitus (T2DM) by looking at our nutrition, age, and lifestyle. β-cell dysfunction and insulin resistance (IR) are outcomes of the pathophysiology of type 2 diabetes. As an indirect result of IR on important metabolic enzymes, lipid and lipoprotein abnormalities are also a factor in T2DM patients. Recent research has indicated that lipid fluctuation may be the cause of poor glucose metabolism as well as one of its effects. Fatty acids (FAs) affect cell membrane fluidity and permeability, insulin receptor binding and signaling, and the translocation of glucose transporters. Therefore, it is suggested that FAs might play a crucial part in the emergence of IR and T2DM.
We can summarize the main risk factors for type 2 diabetes mellitus (T2DM) by looking at our nutrition, age, and lifestyle. β-cell dysfunction and insulin resistance (IR) are outcomes of the pathophysiology of type 2 diabetes. As an indirect result of IR on important metabolic enzymes, lipid and lipoprotein abnormalities are also a factor in T2DM patients. Recent research has indicated that lipid fluctuation may be the cause of poor glucose metabolism as well as one of its effects. Fatty acids (FAs) affect cell membrane fluidity and permeability, insulin receptor binding and signaling, and the translocation of glucose transporters. Therefore, it is suggested that FAs might play a crucial part in the emergence of IR and T2DM. The cu
... Show MoreThe title compound, [Ru(C12H7Br2N2)2(CO)2], possesses a distorted octahedral environment about the Ru atom, with two cyclometallated 4,40-dibromoazobenzene ligands and two mutually cis carbonyl ligands. The donor atoms are arranged such that the N atoms are respectively trans to a carbonyl ligand and an aryl C atom. Comment The title compound, (I), has been prepared as a minor product of the reaction of Ru3(CO)12 and 4,40-dibromoazobenzene in refluxing n-octane; the major product is the cluster complex Ru3(3-NC6H4Br)2(CO)9 (Willis et al., 2005). Two strong (CO) absorptions at 2039 and 1991 cm1 in the IR spectrum of (I) are consistent with the presence of two mutually cis carbonyl groups. The crystal structure was investigated to ascertai
... Show Moresynthesis and characterization of New Bidentate schiff base Ligand Type(NO)Donor Atoms Derived from isatin and 3-Amino benzoic acid and Its complexes with Co(||),Cu(||),Cd(||)and Hg(||)Ions
Mixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding of the metal ion through –OHand –COOgroups of bidentate to the 5-chlorosalicylic acid and through –NH2 and –COOgroups of bidentate to the L-valine by FT-IR studies . The agar diffusion method has been used to study the antib
... Show MoreThe syntheses, characterization and experimental solid state X-ray structures of five low-spin paramagnetic 2-pyridyl-(1,2,3)-triazole-copper compounds, [Cu(Ln)2Cl2], are presented in this study, for the following five Ln ligands: L1 = 2-(1-(p-tolyl)-1H-(1,2,3-triazol-4-yl)pyridine), L2 = 2-(1-(4- chlorophenyl)-1H-(1,2,3-triazol-4-yl)pyridine), L3 = 4-(4-(pyridin-2-yl)-1H-(1,2,3-triazol-4-yl)benzonitril), L4 = 2-(1-phenyl-1H-(1,2,3-triazol-4-yl)pyridine) and L5 = 2-(1-(4-(trifluoromethyl)phenyl)-1H-(1,2,3- triazol-4-yl)pyridine). These five [Cu(Ln)2Cl2] complexes each contain two bidentate 2-pyridyl-(1,2,3)- triazole (Ln) and two chloride ions as ligands, with the Cu–N(pyridine) bonds, Cu–N(triazole) and Cu–Cl bonds trans to each othe
... Show MoreA series of metal ion complexes of some divalent transition metal ions having the general composition [ML2Cl2]nH2O with 2-(benzo[d]thiazol-2-ylamino)-2- (5-chloro-2-hydroxy phenyl) acetonitrile ligand has been prepared from 5-chloro-2-hydroxy-benzaldehyde and benzo[d]thiazol-2-amine. Existence of cyanide as potassium cyanide in acidic medium was considered, characterized by elemental chemical analysis, conductance of molarity, magnetic susceptibility measurements, FTIR electronic spectral studies and mole ratio method. FTIR indicates the participation of amino and acetonitrile nitrogen which is coordinated with the central metal ion.