The new Schiff base, namely (2-Amino-phenylimino)-acetic acid (L) was prepared
from condensation of glyoxylic acid with o-phenylene diamine. The structure (L) was
characterized by, IR,
1
H,
13
C-NMR and CHN analysis. Metal complexes of the ligand (L)
were synthesized and their structures were characterized by Atomic absorption, IR and UV-Visible spectra, molar conductivity, magnetic moment and molar ratio determination (Co
+2
,
Cd
+2
) complexes. All complexes showed octahedral geometries.
The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1 , and , 2 which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an
The charge density distributions (CDD) and the elastic electron scattering form
factors F(q) of the ground state for some odd mass nuclei in the 2s 1d shell, such
as K Mg Al Si 19 25 27 29 , , , and P 31
have been calculated based on the use of
occupation numbers of the states and the single particle wave functions of the
harmonic oscillator potential with size parameters chosen to reproduce the observed
root mean square charge radii for all considered nuclei. It is found that introducing
additional parameters, namely; 1 , and , 2 which reflect the difference of the
occupation numbers of the states from the prediction of the simple shell model leads
to very good agreement between the calculated an
In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria