Zinc Oxide transparent thin films (ZnO) with different thickness from (220 to 420)nm
±15nm were prepared by thermal evaporation technique onto glass substrates at 200 with
the deposition rate of (10 2) nm sec
-1
, X-ray diffraction patterns confirm the proper phase
formation of the material. The investigation of (XRD) indicates that the (ZnO) film is
polycrystalline type of Hexagonal and the preferred orientation along (002) plane. The Optical
properties of ZnO were determined through the optical transmission method using ultraviolet-visible spectrophotometer with wavelength (300 – 1100) nm. The optical band gap values of
ZnO thin films were slightly increased from (2.9 - 3.1) eV as the film thickness increased.
thin films; structural properties; optical band gap.
Thin films were prepared from melting coumrin C 2 dye in solvent DMF with PMMA with the same solvent and concentrations(1*10-2 5*10-3, 1*10-3 )M ,Films were either left on Flat surface for24hours or dried in avacuum oven for five hours at a temperature of 80c.The relative intensity of both the absorption and fluorescece spectrum are found to be increased with the increase of thickness of these films and concentration .Also the thickness of these films was measured by Mickelsons interfearing method.Also quantum efficiency of these films were measured too
Thin films of CdTe were prepared with thickness (500, 1000) nm on the glass substrate by vacuum evaporation technique at room temperature then treated different annealing temperatures (373,473,and 573)K for one hour. Results of the Hall Effect and the electrical conductivity of (I-V) characteristics were measured in darkness and light.at different annealing temperature results show that the thin films have ability to manufacture solar cells, and found that the efficient equal to (2.18%) for structure solar cell (Algrid / CdS / CdTe /glass/ Al) and the efficient equal to (1.12%) for structure solar cell (Algrid / CdS / CdTe /Si/ Al) with thick ness of (1000) nm with CdTe thin films at RT.
The characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.
This work used the deposition method to synthesize nickel oxide nanoparticles. The materials mainly used in this study were nickel sulfate hexahydrate (as a precursor) and NaOH (as a precipitant). The properties of the nanopowder were characterized by XRD, FE-SEM, EDX, and VSM. The obtained results confirmed the presence of nickel oxide nanoparticles with a face-centered cubic (FCC) structure with a lattice constant (a=4.17834 Å). Scherer and Williamson-Hall equations were used to calculate the crystallite size of about (30.5-35.5) nm. The FE-SEM images showed that the particle shape had a ball-like appearance with a uniform and homogeneous distribution and confirmed that the particles were within the nanoscale. The presence of oxygen a
... Show MoreChlorine doped SnS have been prepared utilizing chemical spray pyrolysis. The effects of chlorine concentration on the optical constants were studied. It was seen that the transmittance decreased with doping, while reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were increased as the doping percentage increased. The results show also that the skin depth decrease as the chlorine percentage increased which could be assure that it is transmittance related.
Spray pyrolysis technique was subjected to synthesized (SnO2)1-x (TiO2: CuO) x Thin films on different substrates like glass and single crystal silicon using. The structure of the deposited films was studied using x-ray diffraction. A more pronounced diffraction peaks of SnO2 while no peaks of (CuO , TiO2 ) phase appear in the X-ray profiles by increasing of the content of (TiO2 , CuO) in the sprayed films. Mixing concentration (TiO2 , CuO) influences on the size of the crystallites of the SnO2 films ,the size of crystallites of the spray paralyzed oxide films change in regular manner by increasing of (TiO
... Show MoreIn this paper, silicon carbonitried thin films were prepared by the method of photolysis of the silane (SiH4) and ethylene (C2H4) gases, with and without ammonia gas (NH3), which is represented by the ratio between the (PNH3) and (PSiH4 + PC2H4 + PNH3), (which assign by the letter X), X has the values (0, 0.13, 0.33). This method carried out by using TEA-CO2 laser, on glass substrate at (375 oC), deposition rate (0.416-0.833) nm/pulse thin film thickness of (500-1000) nm. The optical properties of the films were studied by using Absorbance and Transmittance spectrums in wavelength range of (400-1100) nm, the results showed that the electronic transitions is indirect and the energy gap for the SiCN films increase with increasing of nitrog
... Show MoreThis study reports the fabrication of tin oxide (SnO2) thin films using pulsed laser deposition (PLD). The effect of 60Co (300, 900, and 1200 Gy) gamma radiation on the structural, morphological, and optical features is systematically demonstrated using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and ultraviolet-visible light analysis (UV-Vis), respectively In XRD tests, the size of the crystallites decreased from 45.5 to 40.8 nm for the control samples and from 1200 Gy to 60Co for the irradiated samples. Using FESEM analysis, the particle diameter revealed a similar trend to that attained using XRD; in particular, the average diameters were 93.8 and
... Show More