The structural, optical and electrical properties of ZnS films prepared by vacuum
evaporation technique on glass substrate at room temperature and treated at different
annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The
structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction
studies show that the structure is polycrystalline with cubic structure, and there are strong
peaks at the direction (111).
The optical properties investigated which include the absorbance and transmittance
spectra, energy band gab, absorption coefficient, and other optical constants. The results
showed that films have direct optical transition. The optical band gab was found to be in the
range to (2.96-3.06)eV with increasing annealing temperatures. The electrical properties of
these films have been studied, it was observed that D.C conductivity at room temperature
decreases with the increase of annealing temperatures, and the mechanism of conductivity
occurs in two ranges of temperature, from Hall measurements the conductivity for all samples
of ZnS films is n-type.
The D.C. electrical properties of poly (ethylene oxide)/MgCl2 composites were investigated as a function of different MgCl2 filler concentrations (0, 5, 10, 15 and 20 wt.%) and different temperatures in the range (276–333)o K at three different polarizing fields. Resistivity:ï² and dc Conductivity: σ dc were measured, and the activation energy: Ea of the thermal rate-process of the electrical conduction was investigated. It was found that the current-voltage measurement results exhibited Ohmic resistance behavior, the composites exhibit negative temperature reliance of resistivity and enhancement in the D.C. electrical conductivity with both temperature and MgCl2 concentration. The determined activation energy was found to
... Show MoreThis work presents the study of the dark current density and the capacitance for porous silicon prepared by photo-electrochemical etching for n-type silicon with laser power density of 10mw/cm2 and wavelength (650nm) under different anodization time (30,40,50,60) minute. The results obtained from this study shows different chara that different characteristic of porous diffecteristics for the different porous Silicon layers.
Zinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using
Chemical bath deposition was used to synthesize ZnO nanorods (NRs) on glass and fluorine_doped tin oxide (FTO) substrates. X-ray diffraction was performed to examine the crystallinity of ZnO nanorod. Results showed that ZnO NRs had a wurtzite crystal structure. Field emission scanning electron microscopy images showed that glass sample had rod-like structure distribution with (50 nm) diameter and average length of approximately (700 nm), whereas the FTO-coated glass sample had 25 nm diameter and average length of approximately 950 nm. The direct optical transition band gaps of the glass and FTO_coated glass samples were( 4 and 4.43 eV), respectively. The structural and optical properties of the synthesized ZnO p
... Show MoreGenerally the a.c. conductivity shows a power law in frequency s () where the exponent s ≤ 1. As the frequency goes to zero the conductivity become frequency independent. The a.c. conductivity was studied for the Ge1-xSex thin films to see how the selenium contents affect the permittivity and the permeability for the Ge1-x Sex. The thin films prepared by thermal evaporation at room temperature and under vacuum (~2 x10-5toor) using Edward coating unit model 306A. From the relation between ln conductivity and ln w, the effect of selenium contents in Ge1-x Sex thin films on the exponent value, the relaxation time and the maximum barrier height. An algebric fitting method for circles and circular arcs was used to find the permit
... Show MoreIn the current study, we investigate the effect of (La) substitution instead of (Cu) on the properties of the superconductor compound (Bi2Sr2Ca2Cu3-xLaxO10+δ) with (x=0,0.05,0.1,0.15,0.2). The samples were prepared by solid state reaction method(SSR). Xray diffraction technique (XRD) was used to estimate the structural properties of the specimens which show an orthorhombic crystalline structure for all the specimens. The results show that the change in ( La) concentration leads to decrease the concentration of (Bi-2223), increment in (Bi-2212 ) and(Bi-2201) with appearance of some impurities. Also decrease the critical temperature(Tc) with the increase
... Show MoreThin Lithium Fluoride films have been prepared by thermal evaporation technique on glass substrate under vacuum of about 10-5mbar. The thickness of the films was 4000±50Å. The effects of annealing temperatures on the optical properties and dispersion parameters have been studies. Transmittance spectra of the films indicate that the films have high transparency. The optical absorption studies reveal that the transition is direct with band gap value varied with the annealing temperatures. Also the refractive index dispersion curves obey to the single oscillator's model. The dispersion energy and single-oscillator energy varied with the annealing temperatures