A theoretical calculation of the reorientation energy for non adiabatic electron transfer at
interface between metal and semiconductor system was carried out. The continuum outer
sphere theory of electron transfer reaction has been extensively used for electron transfer
between metal/semiconductor interface .It is found that in these calculations the reorientation
energy is proportional to the optical and statistical dielectric constant of semiconductor ,
properties of metal ,and the distance between metal and semiconductor .Results of
reorientation energy show that ZnO semiconductor with metal Au possess a good matching as
compared with ZnS and ZnSe . Theoretical calculation showed a good agreement with
experimental value.
The main parameters and methods influencing the removal of Gentian Violet (GV) dye from aqueous media were investigated using a stachy plant in this study. The surface of the stachy plant was determined using FTIR spectra. Adsorption is influenced by the adsorbent's characteristic groups. The research took into account the usual conditions for GV dye adsorption by the stachy plant, such as the impact of contact time. Mass dosage , after 0.3 g the amount of adsorbed dye declines. Study pH and ionic strength, the results obtained showed that at pH 3 the largest adsorption of (GV) was seen, while at pH 9, the lowest adsorption was observed at 298 K, the adsorption kinetics and equilibrium constants were achieved, and the equilibr
... Show MoreCopper (I) complex containing folic acid ligand was prepared and characterized on the basis of metal analyses, UV-VIS, FTIR spectroscopies and magnetic susceptibility. The density functional theory (DFT) as molecular modeling calculations was used to determine the donor atoms of folic acid ligand which appear clearly at oxygen atoms binding to hydrogen. Detection of donation sights is supported by theoretical parameters such as geometry, mulliken population, mulliken charge and HOMO-LUMO gap obtained by DFT calculations.
Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load
... Show MoreThe nuclear density distributions and size radii are calculated for one-proton 8B, two-proton 17Ne, one-neutron 11Be and two-neutron 11Li halo nuclei. The theoretical outlines of calculations assume that the nuclei understudy are composed of two parts: the stable core and the unstable halo. The core part is studied using the radial wave functions of harmonic-oscillator (HO) potentials, while the halo is studied through Woods-Saxon (WS) potential. The long tail behaviour which is the main characteristic of the halo nuclei are well generated in comparison with experimental data. The calculated size radii are in good agreement with experimental values. The elastic electron scattering form factors of the C0 component are also c
... Show MoreIn this research, main types of optical coatings are presented which are used as covers for solar cells, these coatings are reflect the infrared (heat) from the solar cell to increase the efficiency of the cell (because the cell’s efficiency is inversely proportional to the heat), then the theoretical and mathematical description of these optical coatings are presented, and an optical design is designed to meet this objective, its optical transmittance was calculated using (MATLAB R2008a) and (Open Filters 1.0.2) programs
The annual performance of a hybrid system of a flat plate photovoltaic thermal system and a solar thermal collector (PVT/ST) is numerically analyzed from the energy, exergy, and environmental (CO2 reduction) viewpoints. This system can produce electricity and thermal power simultaneously, with higher thermal power and exergy compared to conventional photovoltaic thermal systems. For this purpose, a 3D transient numerical model is developed for investigating the system's performance in four main steps: (1) investigating the effects of the mass flow rate of the working fluid (20 to 50 kg/h) on the temperature behavior and thermodynamic performance of the system, (2) studying the impacts of using glass covers on the different parts of the s
... Show MorePresent study was conducted to evaluate the different levels of energy to protein ratios (EPR) using food waste and black soldier fly larvae meal (FWBSFL) on growth performance and nutrient digestibility of broilers. A total of 160 one-day old broiler chicks were divided randomly to four groups and each group had 8 replicates with 5 chicks per replicate. The control diet was formulated using conventional feed ingredients with EPR of 154 for the starter period and 167 for the finisher period. The other treatments were diets with normal, low, and high EPR (154,143, and 166 for the starter period; 167, 155, and 177 for the finisher period) using FWBSFL. Feed consumption and body weight gain as well as digestibility of crude protein, cr
... Show MoreThe energy density state are the powerful factor for evaluate the validity of a material in any application. This research focused on examining the electrical properties of the Se6Te4- xSbx glass semiconductor with x=1, 2 and 3, using the thermal evaporation technique. D.C electrical conductivity was used by determine the current, voltage and temperatures, where the electrical conductivity was studied as a function of temperature and the mechanical electrical conduction were determined in the different conduction regions (the extended and localized area and at the Fermi level). In addition, the density of the energy states in these regions is calculated using the mathematical equations. The constants of energy density states are det
... Show MoreMicroencapsulated of paraffin wax which acts as core material of phase change
material covered by polymer was prepared by using rabid (physical-chemical) with lower
energy (green) method. Prepolymer of condensed Melamine-Formaldehyde resin, was
solidified by heat effect gradually and surrounds the Paraffin wax as microcapsules. The
diameter of the prepared capsules was about (170-220) micron which has a proportion with
the prepolymer temperature, otherwise the thermal analysis appears as a best value of
enthalpy (ΔH) which was (12 J/gm) when the prepolymer temperature was (60˚C)