Let R be a commutative ring with unity and let M be an R-module. In this paper we
study strongly (completely) hollow submodules and quasi-hollow submodules. We investigate
the basic properties of these submodules and the relationships between them. Also we study
the be behavior of these submodules under certain class of modules such as compultiplication,
distributive, multiplication and scalar modules. In part II we shall continue the study of these
submodules.
This paper is devoted to investigate experimentally and theoretically the structural behavior of reinforced concrete hollow beams which have internal transverse ribs under effect of shear. The number of the internal ribs is the major variable adopted in this research, while, the other variables are kept constant for all tested specimens. The experimental part includes poured and test of four (200x300x1200mm) beam specimens, three of these specimens were hollow with different locations of internal ribs and one of them was solid. The experimental results indicated that the shear strength are increased (33%) to (60%) for beams containing internal ribs in comparison with reference beam. Also, the change of beam state from ho
... Show MoreThe aim of this work is studying many concepts of a pure submodule related to sub-module L and introducing the two concepts, T_pure submodule related to submodule and the crossing property of T_pure related to submodule. Another characterizations and study some properties of this concept.
Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.
The duo module plays an important role in the module theory. Many researchers generalized this concept such as Ozcan AC, Hadi IMA and Ahmed MA. It is known that in a duo module, every submodule is fully invariant. This paper used the class of St-closed submodules to work out a module with the feature that all St-closed submodules are fully invariant. Such a module is called an Stc-duo module. This class of modules contains the duo module properly as well as the CL-duo module which was introduced by Ahmed MA. The behaviour of this new kind of module was considered and studied in detail,for instance, the hereditary property of the St-duo module was investigated, as the result; under certain conditions, every St-cl
... Show MoreIn this work a chemical sensor was built by using Plane Wave Expansion (PWE) modeling technique by filling the core of 1550 hollow core photonic crystal fiber with chloroform that has different concentrations after being diluted with distilled water. The minimum photonic bandgap width is.0003 and .0005 rad/sec with 19 and 7 cells respectively and a concentration of chloroform that filled these two fibers is 75%.
Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fibe
... Show MoreIn this paper, we study some cases of a common fixed point theorem for classes of firmly nonexpansive and generalized nonexpansive maps. In addition, we establish that the Picard-Mann iteration is faster than Noor iteration and we used Noor iteration to find the solution of delay differential equation.
Let A be a unital algebra, a Banach algebra module M is strongly fully stable Banach A-module relative to ideal K of A, if for every submodule N of M and for each multiplier θ : N → M such that θ(N) ⊆ N ∩ KM. In this paper, we adopt the concept of strongly fully stable Banach Algebra modules relative to an ideal which generalizes that of fully stable Banach Algebra modules and we study the properties and characterizations of strongly fully stable Banach A-module relative to ideal K of A.
Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications.
Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different pro
... Show More