The paper establishes explicit representations of the errors and residuals of approximate
solutions of triangular linear systems by Jordan elimination and of general linear algebraic
systems by Gauss-Jordan elimination as functions of the data perturbations and the rounding
errors in arithmetic floating-point operations. From these representations strict optimal
componentwise error and residual bounds are derived. Further, stability estimates for the
solutions are discussed. The error bounds for the solutions of triangular linear systems are
compared to the optimal error bounds for the solutions by back substitution and by Gaussian
elimination with back substitution, respectively. The results confirm in a very detailed form
that the errors of the solutions by Jordan elimination and by Gauss-Jordan elimination cannot
be essentially greater than the possible maximal errors of the solutions by back substitution
and by Gaussian elimination, respectively. Finally, the theoretical results are illustrated by
two numerical examples.
AA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai
... Show MoreLow oil extraction and early high water production are caused in part by reservoir heterogeneity. Huge quantities of water production are prevalent issues that happen in older reservoirs. Polyacrylamide polymer gel systems have been frequently employed as plugging agents in heterogeneous reservoirs to regulate water output and increase sweep efficiency. Polyacrylamide polymer gel systems are classified into three classes depending on their composition and application conditions, which are in-situ monomer gel, in-situ polymer gel, and preformed particle gel (PPG).
This paper gives a comprehensive review of PPG’s status, preparation, and mechanisms. Many sorts of PPGs are categorized, for example, millimeter-sized preformed p
... Show MoreThe research deals with the structures of the contemporary travelers' buildings in particular, and which is a functional complex installations where flexibility, technical and stereotypes play an important role as well as the human values These facilities must represent physiological and psychological comfort for travelers. TThose are facilities where architectural form plays a distinguished role in reversing the specialty and identity of the building. Hence the importance of the subject has been in forced, as a result for the need to study these facilities and to determine the impact and affects by the surrounding environment, to the extent of the urban, environmental, urban, social, and psychological levels. The importance of the resea
... Show MoreThis paper proposes a self organizing fuzzy controller as an enhancement level of the fuzzy controller. The adjustment mechanism provides explicit adaptation to tune and update the position of the output membership functions of the fuzzy controller. Simulation results show that this controller is capable of controlling a non-linear time varying system so that the performance of the system improves so as to reach the desired state in a less number of samples.
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
One of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (R
... Show MoreIn this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.