The aim of this paper is to study the best approximation of unbounded functions in the
weighted spaces
,
1, 0 ,
p
p L α
α ≥>.
Key Words: Weighted space, unbounded functions, monotone approximation
In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation. The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation
I n this paper ,we 'viii consider the density questions associC;lted with the single hidden layer feed forward model. We proved that a FFNN with one hidden layer can uniformly approximate any continuous function in C(k)(where k is a compact set in R11 ) to any required accuracy.
However, if the set of basis function is dense then the ANN's can has al most one hidden layer. But if the set of basis function non-dense, then we need more hidden layers. Also, we have shown that there exist localized functions and that there is no t
... Show MoreIt is a well-known fact that publishing companies spend much money, time and energy in designing their book covers to attract potential customers. As the first thing people do when they buy or intend to buy a book is looking at its front cover. However, if there is a need to know more about the book, people usually look at the information on its back cover. This paper attempts to explore the persuasive function of blurbs beyond the constraints of the academic domain and consequently their connection with advertising discourse in two main sections: The first presents the concept of blurb and its structure while the second defines persuasion and shows the most prominent strategiesused in blurbs. Finally, this paper gives the conclusion tha
... Show More
Abstract
The study aims to identify the degree of citizenship values practiced by Bisha University students and identify the impact of gender, college, and academic level, on the degree of the practice of University students for citizenship values. The researcher used the descriptive-analytical method including a questionnaire of (44) items. To process the data, the researcher applied the computational averages, standard deviations, percentages, and T-test. The questionnaire was implemented on a sample of (600) of the 2 and 8 levels during the second semester of the academic year (2020-2019) at Bisha University. The study findings revealed that the degree of the pra
... Show MoreIn this paper, we characterize normal composition operators induced by holomorphic self-map , when and .Moreover, we study other related classes of operators, and then we generalize these results to polynomials of degree n.
A non-polynomial spline (NPS) is an approximation method that relies on the triangular and polynomial parts, so the method has infinite derivatives of the triangular part of the NPS to compensate for the loss of smoothness inherited by the polynomial. In this paper, we propose polynomial-free linear and quadratic spline types to solve fuzzy Volterra integral equations (FVIE) of the 2nd kind with the weakly singular kernel (FVIEWSK) and Abel's type kernel. The linear type algorithm gives four parameters to form a linear spline. In comparison, the quadratic type algorithm gives five parameters to create a quadratic spline, which is more of a credit for the exact solution. These algorithms process kernel singularities with a simple techniqu
... Show MoreIn 2010, Long and Zeng introduced a new generalization of the Bernstein polynomials that depends on a parameter and called -Bernstein polynomials. After that, in 2018, Lain and Zhou studied the uniform convergence for these -polynomials and obtained a Voronovaskaja-type asymptotic formula in ordinary approximation. This paper studies the convergence theorem and gives two Voronovaskaja-type asymptotic formulas of the sequence of -Bernstein polynomials in both ordinary and simultaneous approximations. For this purpose, we discuss the possibility of finding the recurrence relations of the -th order moment for these polynomials and evaluate the values of -Bernstein for the functions , is a non-negative integer
In this paper, we introduce a new class of sets, namely , s*g-ï¡-open sets and we show that the family of all s*g-ï¡-open subsets of a topological space ) ,X( ï´ from a topology on X which is finer than ï´ . Also , we study the characterizations and basic properties of s*g-ï¡open sets and s*g-ï¡-closed sets . Moreover, we use these sets to define and study a new class of functions, namely , s*g- ï¡ -continuous functions and s*g- ï¡ -irresolute functions in topological spaces . Some properties of these functions have been studied .
In this paper, we procure the notions of neutrosophic simply b-open set, neutrosophic simply b-open cover, and neutrosophic simply b-compactness via neutrosophic topological spaces. Then, we establish some remarks, propositions, and theorems on neutrosophic simply
b-compactness. Further, we furnish some counter examples where the result fails.