In this paper we introduce many different Methods of ridge regression to solve multicollinearity problem in linear regression model. These Methods include two types of ordinary ridge regression (ORR1), (ORR2) according to the choice of ridge parameter as well as generalized ridge regression (GRR). These methods were applied on a dataset suffers from a high degree of multicollinearity, then according to the criterion of mean square error (MSE) and coefficient of determination (R2) it was found that (GRR) method performs better than the other two methods.
Abstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show MoreDiscrete logarithms are applied in many cryptographic problems . For instance , in public key . and for construction of sets with disti nct sums of k-clcments. The purpose o r this paper
is to modify the method ol' informationl1·iding using discrete logarithms , introduce new properties of St - sets , uscdthe direct product of groups to construct cyclic group and finally, present modified method for knapsack &
... Show MoreLinear regression is one of the most important statistical tools through which it is possible to know the relationship between the response variable and one variable (or more) of the independent variable(s), which is often used in various fields of science. Heteroscedastic is one of the linear regression problems, the effect of which leads to inaccurate conclusions. The problem of heteroscedastic may be accompanied by the presence of extreme outliers in the independent variables (High leverage points) (HLPs), the presence of (HLPs) in the data set result unrealistic estimates and misleading inferences. In this paper, we review some of the robust
... Show MoreAbstract
Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.
Sustainable development is longer that meet the needs of the present generation without compromising the ability of future generations to meet their own needs as it seeks to harmonize economic, social, Why research aims to check the availability of a proposed program takes into account the evidence and scrutiny of financial commitment and performance audit in accordance with the dimensions of sustainable development (economic, environmental, social and institutional) to measure the extent of the province on the needs of current and future generations, The problem with research that there is no audit program ensures the audit of financial statements, commitment and performance of health services in order to achieve sustainable development
... Show MoreIn this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show MoreIn The Name of Allah Most Gracious Most Merciful
It is no secret to everyone that the endowment is an important nucleus for the prosperity of Islamic civilization, especially in the fields of education, health, economy, and defensive military actions that fall within the door of jihad, and so on. Al-Ashraf, Qom Al-Quds, Cairo, and other parts of the Islamic world. What we will see in the research.
The importance of operational risks increases with the increase in technological development, the development of banking operations, the extent of banking compliance, and the attempt of many banks to achieve quality in banking services. And the extent of the position occupied by Iraqi banks for banking compliance and reducing operational risks. The Basel Committee (2) paid its attention to operational risks and the interest of international banks to follow policies that work to ensure banking compliance and cover operational risks, because of its role in reducing losses due to increased costs and achieving an increase in profits. Realizing and working to confront the best possible and traditional methods, that some risks Operational problem
... Show MoreThis paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given. The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi
... Show More