The fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.
Coagulation is the most important process in drinking water treatment. Alum coagulant increases the aluminum residuals, which have been linked in many studies to Alzheimer's disease. Therefore, it is very important to use it with the very optimal dose. In this paper, four sets of experiments were done to determine the relationship between raw water characteristics: turbidity, pH, alkalinity, temperature, and optimum doses of alum [ .14 O] to form a mathematical equation that could replace the need for jar test experiments. The experiments were performed under different conditions and under different seasonal circumstances. The optimal dose in every set was determined, and used to build a gene expression model (GEP). The models were co
... Show MoreThis paper presents a study of a syndrome coding scheme for different binary linear error correcting codes that refer to the code families such as BCH, BKLC, Golay, and Hamming. The study is implemented on Wyner’s wiretap channel model when the main channel is error-free and the eavesdropper channel is a binary symmetric channel with crossover error probability (0 < Pe ≤ 0.5) to show the security performance of error correcting codes while used in the single-staged syndrome coding scheme in terms of equivocation rate. Generally, these codes are not designed for secure information transmission, and they have low equivocation rates when they are used in the syndrome coding scheme. Therefore, to improve the transmiss
... Show MoreRecently there has been an urgent need to identify the ages from their personal pictures and to be used in the field of security of personal and biometric, interaction between human and computer, security of information, law enforcement. However, in spite of advances in age estimation, it stills a difficult problem. This is because the face old age process is determined not only by radical factors, e.g. genetic factors, but also by external factors, e.g. lifestyle, expression, and environment. This paper utilized machine learning technique to intelligent age estimation from facial images using support vector machine (SVM) on FG_NET dataset. The proposed work consists of three phases: the first phase is image preprocessing include four st
... Show MoreTrimmed Linear moments (TL-moments) are natural generalization of L-moments that do not require the mean of the underlying distribution to exist. It is known that the sample TL-moments is unbiased estimators to corresponding population TL-moment. Since different choices for the amount of trimming give different values of the estimators it is important to choose the estimator that has minimum mean squares error than others. Therefore, we derive an optimal choice for the amount of trimming from known distributions based on the minimum errors between the estimators. Moreover, we study simulation-based approach to choose an optimal amount of trimming and maximum like hood method by computing the estimators and mean squares error for range of
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreIn this paper, we obtain a complete characterization for the norm and the minimum norm attainment sets of bounded linear operators on a real Banach spaces at a vector in the unit sphere, using approximate ðœ–-Birkhoff-James orthogonality techniques. As an application of the results, we obtained a useful characterization of
bounded linear operators on a real Banach spaces. Also, using approximate ðœ–-Birkhoff -James orthogonality proved that a Banach space is a reflexive if and only if for any closed hyperspace of , there exists a rank one linear operator such that , for some vectors in and such that 𜖠.Mathematics subject classification (2010): 46B20, 46B04, 47L05.
Twitter is becoming an increasingly popular platform used by financial analysts to monitor and forecast financial markets. In this paper we investigate the impact of the sentiments expressed in Twitter on the subsequent market movement, specifically the bitcoin exchange rate. This study is divided into two phases, the first phase is sentiment analysis, and the second phase is correlation and regression. We analyzed tweets associated with the Bitcoin in order to determine if the user’s sentiment contained within those tweets reflects the exchange rate of the currency. The sentiment of users over a 2-month period is classified as having a positive or negative sentiment of the digital currency using the proposed CNN-LSTM
... Show MoreIndustrial Investment according to Clean Productive methods is an important element in the process of rational use of Economic Resources, and the Iraqi industrial sector relied on traditional production methods; the productive activities in this sector did not take into consideration the environmental dimension, which leads to achieving the optimal use of economic resources, so it was necessary to have new investment trends heading with Clean Production. Therefore, the research is based on the hypothesis that "Clean Production contributes to improving the environment and rational use of Natural Resources." Based on the descriptive - inductive analysis methodology that study of Iraqi industries with Clean Production,
... Show MoreHighly plastic soils exhibit unfavorited properties upon saturation, which produce different defects in engineering structures. Attempts were made by researchers to proffer solutions to these defects by experimenting in practical ways. This included various materials that could possibly improve the soil engineering properties and reduce environmental hazards. This paper investigates the strength behavior of highly plastic clay stabilized with brick dust. The brick dust contents were 10%, 20%, and 30% by dry weight of soil. A series of linear shrinkage and unconfined compression tests were carried out to study the effect of brick dust on the quantitative amount of shrinkage experienced by highly plastic clay and the undra
... Show MoreSemi-parametric regression models have been studied in a variety of applications and scientific fields due to their high flexibility in dealing with data that has problems, as they are characterized by the ease of interpretation of the parameter part while retaining the flexibility of the non-parametric part. The response variable or explanatory variables can have outliers, and the OLS approach have the sensitivity to outliers. To address this issue, robust (resistance) methods were used, which are less sensitive in the presence of outlier values in the data. This study aims to estimate the partial regression model using the robust estimation method with the wavel
... Show More