This research studies Reinforcing and applied load of Wear Rate for Epoxy composites contains from epoxy resin (Ep) as a matrix material and reinforced by Gawain red wood flour , Russian white wood flour , glass powder and rock wool fibers , with volume fraction (20%) for all samples in lab conditions. by using the load (10,20 ,30 ,40) Newton of iron disc for testing time(10) minute, and the results have shown that the reinforcing of epoxy resin led to decrease wear rate for all samples except the hybrid composites reinforced earth glass powder , that the wear rate values decrease from (22×10-9g/cm) to (4×10-9g/cm) of composite material(Ep+R.W.F) and thus(Ep+W.W.F) at last(Ep+R.W+R.W.F+W.W.F) , but the applied load increase led to increose wear rate for all samples .
In this work, zinc oxide nanoparticles (ZnONPs) and sawdust/epoxy composite (20:80) were mixed using a simple molding method with different ZnONPs concentrations of (0.1, 0.3, 0.5, 0.7, and 1.0 %). The samples of the nanocomposites were characterized by the Scanning Electron Microscopy (SEM) technique to demonstrate the homogeneity of the prepared ZnONPs/nanocomposites. The photocatalytic activity of the samples was examined using the methylene blue (MB) dye as a pollutant solution, through evaluation of the efficiency of the prepared compound in the treatment of organic pollutants under illumination by sunlight. The photocatalytic results showed that after 240 minutes of exposure to sunlight, the sample prepared using (0.5 vol.% of ZnON
... Show MoreOverlapped have been prepared from epoxy resin material added to carbon Nanotube and percentages weight (0.1, 0.05, 0.01) % Studied the mechanical properties of the composite (bending, tensile an d hardness) has been found that the Flexural and tensile modulus of the composites were higher than the pure epoxy resin this may be due to the high mechanical strength of carbon nano tube (CNT). The hardness of the epoxy carbon Nanotube composites increased and the reason is due to increased overlap and stacking between the additives and material basis, which reduces the movement of polymer molecules leading to increased resistance to scratching material and cutting, will become more resistance to plastic deformation.
This research prepared polymer blend contains from epoxy resin (Ep) and polyurethane
)Pu) as a matrix material of percentage (90 %) from epoxy and ) 10 (% polyurethane and
reinforced by PVC fibers and aluminum fibers two dimension knitted mat with fractional
volume(15 %), and study impact strength before and after reinforcing at temperatures of
(20,40,60(
o
CØŒand the results have shown that the reinforcing matrix materials by fibers
increased impact strength values that rise from(3.387kJ/m2) to (151.62kJ/m2) of composite
material (Ep+Pu+PVC(and thus ) Ep+Pu+PVC+Al.F) at last (Ep+Pu+Al.F (. following
composite material so that temperatures increase led to rise impact strength values except the
polymer
This research study the effect of surface modification and copper (Cu) plating carbon fiber (CF) surface on the thermal stability and wettability of carbon fiber (CF)/epoxy (EP) composites. The TGA result indicates that the thermal-stability of carbon fiber may be enhanced after Cu coating CF. TGA curve showed that the treatment temperature was enhanced thermal stability of Ep/CF, this is due to the oxidation during heating. The Cu plating increased the thermal conductivity, this increase might be due to reduce in contact resistance at the interface due to chemical modification and copper plating and tunneling resistance.
The increase of surface polarity after coating cause decreas
... Show MoreNanocomposite of carbon nanotube add to epoxy resin material of weight fraction ( 0.25, 0.5, 0.75 1.0, 1.25, 1.5, 1.75 , 2 & 2.5 wt. % ) were fabricated by dispersing within an epoxy resin using a Ultrasound machine followed by mechanical stirring. The samples were heat treated at temperature ( 80 °C for 3 hrs) The mechanical properties of the composites were investigated. Wear and hardness properties measurements indicated higher wear rate and hardness with increasing concentration of MWCNTs . The MWCNTs significantly improved the wear resistance and hardness when compare than the pure epoxy. These note show too after heat treatment of composite with ( 80 oC for 3 hrs ).
This paper reports a.c., d.c. conductivity and dielectric behavior of Ep-hybrid composite with12 Vol.% Kevlar-Carbon hybrid . D.C. conductivity measurements are conducted on the graded composites by using an electrometer over the temperature range from (293-413) K. It was shown then that conductivity increases by increasing number of Kevlar –Carbon fiber layers (Ep1, Ep2, Ep3), due to the high electrical conductivity of Carbon fiber. To identify the mechanism governing the conduction, the activation energies at low temperature region (LTR) and at high temperature region (HTR) have been calculated. The activation energy values for hybrid composite decrease with increasing number of fiber layers. The a.c. conductivity was measured over fr
... Show MoreThis research estimates the effect of independent factors like filler (3%, 6%, 9%, 11% weight fraction), normal load (5N, 10N, 15N), and time sliding (5,7 , 9 minutes) on wear behavior of unsaturated polyester resin reinforced with jute fiber and waste eggshell and, rice husk powder composites by utilizing a statistical approach. The specimens polymeric composite prepared from resin unsaturated polyester filled with (4% weight fraction) jute fiber, and (3%, 6%, 9%, 11% weight fraction) eggshell, and rice husk by utilizing (hand lay-up) molding. Dry sliding wear experiments were carried utilizing a standard (pin on disc test setup) following a well designed empirical schedule that depends on Taguchi’s experimental design L9 (MINIT
... Show MoreExperimental investigations had been done in this research to demonstrate the effect of carbon fiber and Ceramic fillers contents on the tribological behaviour of (15% volume fraction) carbon-epoxy composite system under varying volume fraction, load, time and sliding distance. The wear resistance were investigated according to ASTM G99-05standard using pin on disc machine to present the composite tribological behaviour. The influence of three ceramic fillers, granite, perlite and calcium carbonate (CaCO3), on the wear of the carbon fabric reinforced epoxy composites under dry sliding conditions has been investigated. The effect of variants in volume fraction, applied load, time and sliding distance on the wear behaviour of po
... Show MoreIn this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
In this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers