Zinc oxide (ZnO) transparent thin films with different oxygen flow rates (0.5, 1.0, and 1.5)Litter/min. were prepared by thermal evaporation technique on glass substrate at a temperature of 200℃ with rate (10±2)nm sec-1, The crystallinity and structure of these films were analyzed by X-ray diffraction (XRD). It exhibits a polycrystalline hexagonal wurtzite structure and the preferred orientation along (002) plane. The Optical properties of ZnO were determined through the optical transmission method using ulta violet–Visible spectrophotometer with in wave length (300-1100)nm. The optical transmittance of the ZnO films increases from 75% to 85% with increase flow rate of O2, and the optical band gap of ZnO films was found to be increased from (3.0) eV to (3.2) eV with increase flow rate of oxygen.The refractive index of ZnO flims increased from (1.1) to (1.27) with increase flow rate of O2 .
<p>The current work investigated the combustion efficiency of biodiesel engines under diverse ratios of compression (15.5, 16.5, 17.5, and 18.5) and different biodiesel fuels produced from apricot oil, papaya oil, sunflower oil, and tomato seed oil. The combustion process of the biodiesel fuel inside the engine was simulated utilizing ANSYS Fluent v16 (CFD). On AV1 diesel engines (Kirloskar), numerical simulations were conducted at 1500 rpm. The outcomes of the simulation demonstrated that increasing the compression ratio (CR) led to increased peak temperature and pressures in the combustion chamber, as well as elevated levels of CO<sub>2</sub> and NO mass fractions and decreased CO emission values un
... Show MoreTwo field experiments were performed to study the response of two species , Nigella sativa L. and Nigella arvensis L. within different sowing dates at spring and autumn seasons which included 1st and 20th March, 10th April and 1st May for spring season, while the sowing dates for the autumn season were, 2nd November, 21st November, 11th December, 31stDecember and 20thJanuary. Both experiments conducted according to the Completely Randomized Block Design (CRBD) within three replications at hallabja/Kurdistan Region, located [35°12'48.7"N; 45°57'34.4"
... Show MoreObjective: The objective of the present study was to design and optimize oral fast dissolving film (OFDF) of practically insoluble drug lafutidine in order to enhance bioavailability and patient compliance especially for a geriatric and unconscious patient who are suffering from difficulty in swallowing.Methods: The films were prepared by a solvent casting method using low-grade hydroxyl propyl methyl cellulose (HPMC E5), polyvinyl alcohol (PVA), and sodium carboxymethyl cellulose (SCMC) as film forming polymers. Polyethylene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer to enhance the film forming properties of the polymer. Tween 80 (1% solution) and poloxamer407 were used as a surfactant, citri
... Show MoreAbstract Background: This study is aimed to assess the maxillary incisors’ root position, angulation, and buccal alveolar bone thickness in both genders and different classes of malocclusion using cone‑beam computed tomography (CBCT). Materials and Methods: Two hundred and six CBCT images were gathered and analyzed by three‑dimensional On‑Demand software to measure the variables of 803 maxillary central and lateral incisors. Genders and class difference was determined by unpaired t‑test, one‑way ANOVA, and Chi‑square tests. Results: Buccal root position of the maxillary incisors accounted for in the majority of the cases followed by the middle and palatal positions. The thickness of alveolar bone appears to have nearly the sam
... Show MoreThree-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essentia
... Show MoreFractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
The Adaptive Optics technique has been developed to obtain the correction of atmospheric seeing. The purpose of this study is to use the MATLAB program to investigate the performance of an AO system with the most recent AO simulation tools, Objected-Oriented Matlab Adaptive Optics (OOMAO). This was achieved by studying the variables that impact image quality correction, such as observation wavelength bands, atmospheric parameters, telescope parameters, deformable mirror parameters, wavefront sensor parameters, and noise parameters. The results presented a detailed analysis of the factors that influence the image correction process as well as the impact of the AO components on that process
Recently, a great rise in the population and fast manufacturing processes were noticed. These processes release significant magnitudes of waste. These wastes occupied a notable ground region, generating big issues for the earth and the environment. To enhance the geotechnical properties of fine-grained soil, a sequence of research projects in the lab were conducted to analyze the impacts of adding sludge waste (SW). The tests were done on both natural and mixed soil with SW at various proportions (2%, 4%, 6%, 8%, and 10%) based on the dry mass of the soil used. The experiments conducted focused on consistency, compaction, and shear strength. With the addition of 10% of SW, the values of LL and PI decreased by 29.7% and 3
... Show More