In this work, we use the explicit and the implicit finite-difference methods to solve the nonlocal problem that consists of the diffusion equations together with nonlocal conditions. The nonlocal conditions for these partial differential equations are approximated by using the composite trapezoidal rule, the composite Simpson's 1/3 and 3/8 rules. Also, some numerical examples are presented to show the efficiency of these methods.
The dramatic decrease in the cost of genome sequencing over the last two decades has led to an abundance of genomic data. This data has been used in research related to the discovery of genetic diseases and the production of medicines. At the same time, the huge space for storing the genome (2–3 GB) has led to it being considered one of the most important sources of big data, which has prompted research centers concerned with genetic research to take advantage of the cloud and its services in storing and managing this data. The cloud is a shared storage environment, which makes data stored in it vulnerable to unwanted tampering or disclosure. This leads to serious concerns about securing such data from tampering and unauthoriz
... Show MoreThe numerical response of Chrysoperla mutata MacLachlan was achieved by exposing the larvae of the predators to various densities of dubas nymphs Ommatissus lybicus DeBerg. Survival rate of predators’ larvae and adults emergence increased with increasing consumption . Repriductive response of predator was highly correlated with the amount of food consumed (+0.996).
In this research, the Boiti–Leon–Pempinelli (BLP) system was used to understand the physical meaning of exact and solitary traveling wave solutions. To establish modern exact results, considered. In addition, the results obtained were compared with those obtained by using other existing methods, such as the standard hyperbolic tanh function method, and the stability analysis for the results was discussed.
This paper propose the semi - analytic technique using two point osculatory interpolation to construct polynomial solution for solving some well-known classes of Lane-Emden type equations which are linear ordinary differential equations, and disusse the behavior of the solution in the neighborhood of the singular points along with its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
Many numerical approaches have been suggested to solve nonlinear problems. In this paper, we suggest a new two-step iterative method for solving nonlinear equations. This iterative method has cubic convergence. Several numerical examples to illustrate the efficiency of this method by Comparison with other similar methods is given.
The purpose of the current research is to identify the most important problems that primary school students suffer from inside and outside the classroom from the point of view of their teachers. A sample of (100) male and female teachers was chosen from the Rusafa\ second Directorate for the academic year (2018-2019). The research tool was prepared after reviewing literature related to the issue of problems and difficulties facing students or students in the school stage and even at university. The researcher reached several results that were discussed in the fourth chapter, with a set of conclusions based on the results of the research, and come up with several recommendations and suggestions.
In this paper, a general expression formula for the Boubaker scaling (BS) operational matrix of the derivative is constructed. Then it is used to study a new parameterization direct technique for treating calculus of the variation problems approximately. The calculus of variation problems describe several important phenomena in mathematical science. The first step in our suggested method is to express the unknown variables in terms of Boubaker scaling basis functions with unknown coefficients. Secondly, the operational matrix of the derivative together with some important properties of the BS are utilized to achieve a non-linear programming problem in terms of the unknown coefficients. Finally, the unknown parameters are obtaine
... Show MoreThe aim of this study is to provide an overview of various models to study drug diffusion for a sustained period into and within the human body. Emphasized the mathematical compartment models using fractional derivative (Caputo model) approach to investigate the change in sustained drug concentration in different compartments of the human body system through the oral route or the intravenous route. Law of mass action, first-order kinetics, and Fick's perfusion principle were used to develop mathematical compartment models representing sustained drug diffusion throughout the human body. To adequately predict the sustained drug diffusion into various compartments of the human body, consider fractional derivative (Caputo model) to investiga
... Show MoreEbastine (EBS) is a poorly water-soluble antihistaminic drug; it belongs to the class II group according to the biopharmaceutical classification system (BCS). The aim of the present work was to enhance the solubility, dissolution rate and micromeritic properties of the drug, by formulating it as spherical crystal agglomerates by Quasi Emulsion Solvent Diffusion (QESD) method.
Spherical crystal agglomerates (SCAs) were prepared in presence of three solvents dichloromethane (DCM), water and chloroform as a good solvent, poor solvent and bridging solvent respectively. Agglomeration of EBS involved the use of some hydrophilic polymers like polyethylene glycol 4000 (PEG 4000), polyvinyl pyrrolidine K30 (PVP K30), D-?-tocopheryl
... Show More