In this paper, we applied the concept of the error analysis using the linearization method and new condition numbers constituting optimal bounds in appraisals of the possible errors. Evaluations of finite continued fractions, computations of determinates of tridiagonal systems, of determinates of second order and a "fast" complex multiplication. As in Horner's scheme, present rounding error analysis of product and summation algorithms. The error estimates are tested by numerical examples. The executed program for calculation is "MATLAB 7" from the website "Mathworks.com
The main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
In this paper, we introduce and discuss an algorithm for the numerical solution of some kinds of fractional integral and fractional integrodifferential equations. The algorithm for the numerical solution of these equations is based on iterative approach. The stability and convergence of the fractional order numerical method are described. Finally, some numerical examples are provided to show that the numerical method for solving the fractional integral and fractional integrodifferential equations is an effective solution method.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
Abstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show MoreCoaxial (wire-cylinder) electrodes arrangements are widely used for electrostatic deposition of dust particles in flue gases, when a high voltage is applied to electrodes immersed in air and provide a strongly non-uniform electric field. The efficiency of electrostatic filters mainly depends on the value of the applied voltage and the distribution of the electric field. In this work, a two-dimensional computer simulation was constructed to study the effect of different applied voltages (20, 22, 25, 26, 28, 30 kV) on the inner electrode and their effect on the efficiency of the electrostatic precipitator. Finite Element Method (FEM) and COMSOL Multiphysics software were used to simulate the cross section of a wire cylinder. The results sh
... Show MoreIn this work, we use the explicit and the implicit finite-difference methods to solve the nonlocal problem that consists of the diffusion equations together with nonlocal conditions. The nonlocal conditions for these partial differential equations are approximated by using the composite trapezoidal rule, the composite Simpson's 1/3 and 3/8 rules. Also, some numerical examples are presented to show the efficiency of these methods.
Optimization is essentially the art, science and mathematics of choosing the best among a given set of finite or infinite alternatives. Though currently optimization is an interdisciplinary subject cutting through the boundaries of mathematics, economics, engineering, natural sciences, and many other fields of human Endeavour it had its root in antiquity. In modern day language the problem mathematically is as follows - Among all closed curves of a given length find the one that closes maximum area. This is called the Isoperimetric problem. This problem is now mentioned in a regular fashion in any course in the Calculus of Variations. However, most problems of antiquity came from geometry and since there were no general methods to solve suc
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show More