Complexes of (Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+) with the ligand Ethyl cyano (2methyl carboxylate phenyl azo acetate) (ECA) have been prepared and characterized by FTIR, (UV-Visible), Atomic absorption spectroscopy, Molar conductivity measurements and magnetic moments measurements. The following general formula has been suggested for the prepared complexes [M(ECA)2]Cl2 where M = (Co2+, Ni2+, Cu2+ ,Zn2+, Cd2+, Hg2+) and the geometry is octahedral.
Spectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show MoreATAW Eqbal Abdul Ameer'. Shifaa Jameel Ibrahim?, HISTORY Of MEDICINE, 2023
The synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.
In this work, production of silicon metal at high purity of 99% by using Iraqi–starting materials (Iraqi sand and plant coal)was reported, electric arc–furnaces assembly was manufactured inside, the graphite electrodes were made from graphite scrap, this system is operate to produce about 800 gm /6hr of silicon metal to meet the need for manufacturing silicon oils, resins, solar cells, and electronic parts. The procedure, equipments and analysis data were described as well.
This study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%)
... Show MoreDry gas is considered one of the most environmentally friendly sources of energy. As a result, developing an efficient strategy for storing this gas has become essential. In this work, MOF-199 was synthesized and characterized in order to investigate the MOF-199 in dry gas adsorption using a built-in volumetric system (methane, ethane, and propane from Basrah gas company). The MOF-199 (metal organic framework) was synthesized using the solvothermal method at 373K for 24h, and then it was characterized. The dry gas adsorption on MOF-199 was studied under various conditions (adsorbent dosage, contact time, temperature, and pressure). The isothermal adsorption of the dry gas had been studied on MOF-199 using two types of mo
... Show MoreSince the appearance of COVID-19 disease as an epidemic and pandemic disease, many studies are performed to uncover the genetic nature of the newly discovered coronavirus with unique clinical features. The last three human coronavirus outbreaks, SARS-CoV, MERS-CoV and SARS-CoV-2 are caused by Beta-Coronaviruses. Horizontal genetic materials transfer was proven from one coronavirus to the other coronavirus of non-human origin like infectious bronchitis virus (IBV) of avian. Horizontal genetic materials transfer was also from non-corona viruses like astroviruses and equine rhinovirus (ERV-2) or from coronavirus-unrelated viruses, like influenza virus type C. However, SARS-CoV-2 is identical to SARS-CoV and MERS-CoV. Interestingly, Wuhan ci
... Show More