In the present paper, Arabic Character Recognition Edge detection method based on contour and connected components is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content. The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location . The third stage the euclidean distance and vector angle are combined by using a saturation-based combination for edge detection using connected component Contour(CO3) for each character. The system has been tested on MATLAB environment with satisfactory results. Given a better device the result should increase in accuracy significantly. Fonts show that the accuracy of the proposed method is 97.4% correct characters identification in average. The contour code technique seems to be very promising producing top results. The experimental results confirm the effectiveness of the proposed algorithm.
Background: Periodontitis is an inflammatory disease that affects the supporting tissues of the teeth; Smoking is an important risk factor for periodontitis induces alveolar bone loss and cause an imbalance between bone resorption and bone deposition. The purpose of this study is to detect and compare the presence of incipient periodontitis among young smokers and non-smokers by measuring the distance between cement-enamel junction and alveolar crest (CEJ-Ac) using Cone Beam Computed Tomography (CBCT). Material and methods: The total sample composed of fifty two participants, thirty one smokers and twenty one non-smokers (age range 14-22 years). Periodontal parameters: plaque index (PLI), gingival index (GI) were recorded for all teeth exc
... Show MoreBackground: Molars and premolars are considered as the most vulnerable teeth of caries attack, which is related to the morphology of their occlusal surfaces along with the difficulty of plaque removal. different methods were used for early caries detection that provide sensitive, accurate preoperative diagnosis of caries depths to establish adequate preventive measures and avoid premature tooth treatment by restoration. The aim of the present study was to evaluate the clinical sensitivity and specificity rates of DIAGNOdent and visual inspection as opposed to the ICDAS for the detection of initial occlusal caries in noncavitated first permanent molars. Materials and Methods: This study examined 139 occlusal surface of the first permanent
... Show MoreG-system composed of three isolates G3 ( Bacillus),G12 ( Arthrobacter )and G27 ( Brevibacterium) was used to detect the mutagenicity of the anticancer drug, cyclophosphamide (CP) under conditions similar to that used for standard mutagen, Nitrosoguanidine (NTG). The CP effected the survival fraction of isolates after treatment for 15 mins using gradual increasing concentrations, but at less extent comparing to NTG. The mutagenic effect of CP was at higher level than that of NTG when using streptomycin as a genetic marker, but the situation was reversed when using rifampicin resistant as a report marker. The latter effect appeared upon recording the mutagen efficiency (ie., number of induced mutants/microgram of mutagen). Measuring the R
... Show MoreThe normalized difference vegetation index (NDVI) is an effective graphical indicator that can be used to analyze remote sensing measurements using a space platform, in order to investigate the trend of the live green vegetation in the observed target. In this research, the change detection of vegetation in Babylon city was done by tracing the NDVI factor for temporal Landsat satellite images. These images were used and utilized in two different terms: in March 19th in 2015 and March 5th in 2020. The Arc-GIS program ver. 10.7 was adopted to analyze the collected data. The final results indicate a spatial variation in the (NDVI), where it increases from (1666.91 𝑘𝑚2) in 2015 to (1697.01 𝑘𝑚2)) in 2020 between the t
... Show More