In the present paper, Arabic Character Recognition Edge detection method based on contour and connected components is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content. The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location . The third stage the euclidean distance and vector angle are combined by using a saturation-based combination for edge detection using connected component Contour(CO3) for each character. The system has been tested on MATLAB environment with satisfactory results. Given a better device the result should increase in accuracy significantly. Fonts show that the accuracy of the proposed method is 97.4% correct characters identification in average. The contour code technique seems to be very promising producing top results. The experimental results confirm the effectiveness of the proposed algorithm.
Face recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreBackground: Parvovirus B19 is a human pathogenic virus associated with a wide range of clinical conditions. During pregnancy congenital infection with parvovirus B19 can be associated with poor outcome, including miscarriage, fetal anemia and non-immune hydrops.
Objective: The study aimed to determine the prevalenceof Parvovirus B19 DNA in pregnant women attending the Military hospital in Khartoum, demonstrating the association between the virus and poor pregnancy outcomes.
Subjects and methods: This study was a cross sectional study, testing pregnant Sudanese women whole blood samples (n= 97) for the presence of Parvovirus B1
... Show MoreResumen The article deals with the analysis of different ways of creating Arabic scientific terminology. Arabic scientific style includes the terminology that represents different scientific areas functioning in all Arabic countries. These ways can be classified as: giving the meaning of terms; construction of new terms according to the rules of word formation; reduction and ellipsis of terms; direct term borrowing, all the above-mentioned being subject to further analysis. Main objectives of academic style, the specific features and certain lexical and grammatical peculiarities of the Arabic scientific terminology are under consideration as well. Discussed in the paper are linguistic and extra-linguistic factors influencing the ways of sci
... Show MoreThis study Arabic dialect prevailing in the province of Khuzestan [southwest Islamic Republic of Iran] as one of the Arabic dialects abundant qualities and characteristics of linguistic entrenched in the foot, which includes among Tithe thousands composed of vocabulary and structures and phrases classical that live up to the pre-Islamic era, if what Tasha researcher and reflect accurately the find of a large number of phrases and vocabulary and acoustic properties by nature accent, and formal, and nature of the synthetic, and characteristics semantic and contextual in this dialect studied without being something of them heavy on the tongue and without displays her tune or Tasha or distortion and so on all of which constitute a catalyst i
... Show MoreSpelling correction is considered a challenging task for resource-scarce languages. The Arabic language is one of these resource-scarce languages, which suffers from the absence of a large spelling correction dataset, thus datasets injected with artificial errors are used to overcome this problem. In this paper, we trained the Text-to-Text Transfer Transformer (T5) model using artificial errors to correct Arabic soft spelling mistakes. Our T5 model can correct 97.8% of the artificial errors that were injected into the test set. Additionally, our T5 model achieves a character error rate (CER) of 0.77% on a set that contains real soft spelling mistakes. We achieved these results using a 4-layer T5 model trained with a 90% error inject
... Show MoreProviding stress of poetry on the syllable-, the foot-, and the phonological word- levels is one of the essential objectives of Metrical Phonology Theory. The subsumed number and types of syllables, feet, and meters are steady in poetry compared to other literary texts that is why its analysis demonstrates one of the most outstanding and debatable metrical issues. The roots of Metrical Phonology Theory are derived from prosody which studies poetic meters and versification. In Arabic, the starting point of metrical analysis is prosodic analysis which can be attributed to يديهارفلا in the second half of the eighth century (A.D.). This study aims at pinpointing the values of two metrical parameters in modern Arabic poetry. To
... Show More