In this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improvement for WSLE method, depends on the value for the Forgetting Factor parameter (α),which haave value less than one(i.e. 1) ( α< ). The estimate is improved for large value for parameterα exactly at 0.99 α= .Finally, we used the estimation methods (LDR&WLSE) for real data.
In this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A comparison between numerical and experimental data, illustrated
... Show MoreThe aim of this paper is to introduce the concepts of asymptotically p-contractive and asymptotically severe accretive mappings. Also, we give an iterative methods (two step-three step) for finite family of asymptotically p-contractive and asymptotically severe accretive mappings to solve types of equations.
In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H
... Show MoreThe power generation of solar photovoltaic (PV) technology is being implemented in every nation worldwide due to its environmentally clean characteristics. Therefore, PV technology is significantly growing in the present applications and usage of PV power systems. Despite the strength of the PV arrays in power systems, the arrays remain susceptible to certain faults. An effective supply requires economic returns, the security of the equipment and humans, precise fault identification, diagnosis, and interruption tools. Meanwhile, the faults in unidentified arc lead to serious fire hazards to commercial, residential, and utility-scale PV systems. To ensure secure and dependable distribution of electricity, the detection of such ha
... Show MoreThe aim of this paper, is to study different iteration algorithms types two steps called, modified SP, Ishikawa, Picard-S iteration and M-iteration, which is faster than of others by using like contraction mappings. On the other hand, the M-iteration is better than of modified SP, Ishikawa and Picard-S iterations. Also, we support our analytic proof with a numerical example.
In this study, the Halder-Wagner method was used for an analysisX-ray lines of Tio2 nanoparticles. Where the software was used to calculate the FWHM and integral breath (β) to calculate the area under the curve for each of the lines of diffraction. After that, the general equation of the halder- Wagner method is applied to calculate the volume (D), strain (ε), stress (σ), and energy per unit(u). Volume (β). Where the value of the crystal volume was equal to (0.16149870 nm) and the strain was equal to (1.044126), stress (181.678 N / m2), and energy per unit volume (94.8474 J m-3).The results obtained from these methods were then compared with those obtained from each of the new paradigm of the HalderWagner method, the Shearer developm
... Show MoreIn this research, the performance of a two kind of membrane was examined to recovering the nutrients (protein and lactose) from the whey produced by the soft cheese industry in the General Company for Food Products inAbo-ghraab.Wheyare treated in two stages, the first including press whey into micron filter made of poly vinylidene difluoride (PVDF) standard plate type 800 kilo dalton, The membrane separates the whey to permeate which represent is the main nutrients and to remove the fat and microorganisms.The second stage is to isolate the protein by using ultra filter made of polyethylsulphone(PES)type plate with a measurement of 10,60 kilo dalton and the recovery of lactose in the form of permeate.
The results showed that the percen
Doxycycline hyclate is an antibiotic drug with a broad‐spectrum activity against a variety of gram‐positive and gram‐negative bacteria and is frequently used as a pharmacological agent and as an effector molecule in an inducible gene expression system. A sensitive, reliable and fast spectrophotometric method for the determination of doxycycline hyclate in pure and pharmaceutical formulations has been developed using flow injection analysis (FIA) and batch procedures. The proposed method is based on the reaction between the chromogenic reagent (V4+) and doxycycline hyclate in a neutral medium, resulting in the formation of a yellow compound that shows maximum absorbance at 3
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient