Preferred Language
Articles
/
jih-447
Estimate AR(3) by Using Levinson-Durbin Recurrence & Weighted Least Squares Error Methods
...Show More Authors

In this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improvement for WSLE method, depends on the value for the Forgetting Factor parameter (α),which haave value less than one(i.e. 1) ( α< ). The estimate is improved for large value for parameterα exactly at 0.99 α= .Finally, we used the estimation methods (LDR&WLSE) for real data.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Analysis of Robust Principal Components Depends on the some methods of Projection-Pursuit
...Show More Authors

The analysis of the classic principal components are sensitive to the outliers where they are calculated from the characteristic values and characteristic vectors of correlation matrix or variance Non-Robust, which yields an incorrect results in the case of these data contains the outliers values. In order to treat this problem, we resort to use the robust methods where there are many robust methods Will be touched to some of them.

   The robust measurement estimators include the measurement of direct robust estimators for characteristic values by using characteristic vectors without relying on robust estimators for the   variance and covariance matrices. Also the analysis of the princ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Computer Networks, Big Data And Iot
A Comprehensive Study of Various DC Faults and Detection Methods in Photovoltaic System
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Wed Jan 11 2023
Journal Name
Mathematical Problems In Engineering
Bayesian Methods for Estimation the Parameters of Finite Mixture of Inverse Rayleigh Distribution
...Show More Authors

Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Word Embedding Methods for Word Representation in Deep Learning for Natural Language Processing
...Show More Authors

    Natural Language Processing (NLP) deals with analysing, understanding and generating languages likes human. One of the challenges of NLP is training computers to understand the way of learning and using a language as human.  Every training session consists of several types of sentences with different context and linguistic structures. Meaning of a sentence depends on actual meaning of main words with their correct positions. Same word can be used as a noun or adjective or others based on their position. In NLP, Word Embedding is a powerful method which is trained on large collection of texts and encoded general semantic and syntactic information of words. Choosing a right word embedding generates more efficient result than others

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (15)
Scopus Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Science
A Comparison of Different Estimation Methods to Handle Missing Data in Explanatory Variables
...Show More Authors

Missing data is one of the problems that may occur in regression models. This problem is usually handled by deletion mechanism available in statistical software. This method reduces statistical inference values because deletion affects sample size. In this paper, Expectation Maximization algorithm (EM), Multicycle-Expectation-Conditional Maximization algorithm (MC-ECM), Expectation-Conditional Maximization Either (ECME), and Recurrent Neural Networks (RNN) are used to estimate multiple regression models when explanatory variables have some missing values. Experimental dataset were generated using Visual Basic programming language with missing values of explanatory variables according to a missing mechanism at random general pattern and s

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 15 2021
Journal Name
Al-academy
Effect of formation Methods on Sintering Process of Ceramic Materials: هديل سلمان سعيد
...Show More Authors

The current research is concerned with methods of formation and their effect on the sintering process of ceramic materials. The research is divided into a number of chapters. The first chapter addressed the research structure (the research problem, importance, objective, limits, and it also defined the terms used in the research). The second chapter addressed the theoretical framework, where the theoretical framework has been divided into three sections. The first section dealt with methods of formation of ceramic materials including: Plasticizing method 2- semi-dry pressing method 3- dry pressing method 4- extrusion method 5- casting method.
The researcher found that there is a clear difference between the methods through her formati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
The Use of Parametric and Nonparametric Methods to Study the Effects of Smoking on High-Density Lipoprotein Cholesterol
...Show More Authors

Analysis of variance (ANOVA) is one of the most widely used methods in statistics to analyze the behavior of one variable compared to another. The data were collected from a sample size of 65 adult males who were nonsmokers, light smokers, or heavy smokers. The aim of this study is to analyze the effects of cigarette smoking on high-density lipoprotein cholesterol (HDL-C) level and determine whether smoking causes a reduction  in this level, by using the completely randomized design (CRD) and Kruskal- Wallis method. The results showed that the assumptions of the one- way ANOVA are not satisfied, while, after transforming original data by using log transformation, they are satisfied. From the results, a significantly

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Oct 28 2019
Journal Name
Iraqi Journal Of Science
Laplace Adomian and Laplace Modified Adomian Decomposition Methods for Solving Nonlinear Integro-Fractional Differential Equations of the Volterra-Hammerstein Type
...Show More Authors

In this work, we will combine the Laplace transform method with the Adomian decomposition method and modified Adomian decomposition method for semi-analytic treatments of the nonlinear integro-fractional differential equations of the Volterra-Hammerstein type with difference kernel and such a problem which the kernel has a first order simple degenerate kind which the higher-multi fractional derivative is described in the Caputo sense. In these methods, the solution of a functional equation is considered as the sum of infinite series of components after applying the inverse of Laplace transformation usually converging to the solution, where a closed form solution is not obtainable, a truncated number of terms is usually used for numerical

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref