In this work two moles of 2-amino benzothiazole were allowed to react with one mole of pyromellitic dianhydride to produce N,N‾-Bis-(benzathiazol-2-yl) pyromellitamic diacid [I] which was submitted to esterification via the reaction with dimethyl sulphate in sodium carbonate in acetone as a solvent to synthesize N,N‾-bis-(benzothiazol-2-yl) pyromellitam diacetate [II] .This ester was used to produce novel compounds through two paths :- Path one:- Reaction of ester [II] with hydrazine in ethanol as a solvent to form the corresebonding N,N‾-bis (benzothiazole-2-yl) –pyromellitamic acid hydrazide [III] which react with acetyl acetone in ethanol or with phthalic anhydride in dioxane to yield new pyrazole, N,N‾-bis[(2-amidobenzothiazol) 3,5-dimethyl pyrazole] pyromellitic [IV] . and new imide; N,N‾-bis-[(2-amidobenzothiazol)-amido phthalimide] pyromellit [V] respectively. Path two:- Reaction of ester [II] with thiosemicarbazide to form bis [N,N‾(2amidobenzothiazole) thiosemicarbazide] pyromellitic acid [VI] ,which is converted to triazole. bis[N,N‾ (2-amido benzothiazol) 1,2,4-triazole -3-yl] pyromellit [VII] under basic condition treatment of the last product with different alkyl halides to give new series of thioalkyl triazoles; bis [N,N-(2-amido benzothiazole)-5-thio alkyl 1,2,4-triazole-3-yl] pyromellit[VIII]n All the above compoundes were characterized by their melting points, elemental analysis and by their spectral data,FTIR and 1HNMR for (some of them).
The process for preparing activated carbon (AC) made from tea residue was described in this paper. Investigated were the physicochemical characteristics and adsorption efficiency of the produced AC. Activation with potassium hydroxide (KOH) and carbonization at 350 °C are the two key steps in the manufacturing of AC. The activated carbon was used to adsorb Tetracycline (TC). Different parameters were studied at room temperature to show their effects on the adsorption efficiency of TC. These parameters are the initial concentration of adsorbate TC, solution acidity pH, time of adsorption, and adsorbent dosage. The prepared active carbon was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (
... Show MoreNew Schiff base [3-(3-acetylthioureido)pyrazine-2-carboxylic acid][L] has been prepared through 2 stages, the chloro acetyl chloride has been reacting with the ammonium thiocyanate in the initial phase for producing precursor [A], after that [A] has been reacting with the 3-amino pyrazine-2-carboxilic acid to provide a novel bidentate ligand [L], such ligand [L] has been reacting with certain metal ions in the Mn(II), VO(II), Ni(II), Co(II), Zn(II), Cu(II), Hg(II), and Cd(II) for providing series of new metal complexes regarding general molecular formula [M(L)2XY], in which; VO(II); X=SO4,Y=0, Co(II), Mn(II), Cu(II), Ni(II), Cd(II), Zn(II), and Hg(II); Y=Cl, X=Cl. Also, all the compounds were characterized through spectroscopic techniques [
... Show MoreIn the present work, the phthalic acid (phthH2) and 1.10 phenonthroline (phen), and their complexes were synthesized and isolated as [M(phth)(phen)2], Mn(II), Fe(II), Co(II), Ni(II) Cu(II), Zn(II), and Cd(II) ions. These complexes were characterized by elemental analysis, melting point, conductivity, percentage metal, UV–Vis, FT-IR, and magnetic moment measurements. The molar conductance indicates that all the metal complexes in DMSO are nonelectrolytic. phthalic acid (phtha), and 1,10-Phenanthroline (phen), behaved as bidentate, coordinating to the metal ion through their two oxygen and two pyridinyl nitrogen atoms respectively, as corroborated by. Electronic spectra, FTIR, spectroscopy amusement indicated that all the metal complexes ad
... Show MoreIn this research various of 2,5-disubstituted 1,3,4-oxadiazole (Schiff base, oxo-thiazolidine , and other compounds) were synthesized from 2,5-di(4,4?- amino-1,3,4-oxadiazole ) which use quently synthesized from mixture of 4-amino benzoic acid and hydrazine in the presence of polyphosphorus acid. The synthesized compounds were characterized by using some Spectral data (UV, FT-IR, and 1H-NMR).
In this paper, some chalcone derivatives (C1, C2) were synthesized based on the reaction of equal amount of substituted acetophenone and substituted banzaldehyde in basic medium. Oxazine and thiazine derivatives were prepared from the reaction of chalcones (C1-C2) with urea and thiourea respectively in a basic medium. Pyrazole derivatives were prepared based on the reaction of chalcones with hydrazine mono hydrate or phenyl hydrazine in the presence of glacial acetic acid as a catalyst. The new synthesized compounds were identified using various physical techniques like1 H-NMR and FT-IR spectra.
The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dim
... Show Moreoupling reaction of 4-aminoantipyrene with the (L-Histidine) gave the new bidentate azo ligand.The prepared ligand was identified by FT.IR, UV-Vis and HNMR spectroscopics technique. Treatment of the prepared ligand was done with the following metal ions (Ag+ ,Pb+2 ,Fe+3 ,Cr+3 ) in aqueous ethanol with a1:1 and 1:2 M:L ratio . The prepared complexes were characterized by using FT. IR and UV- VIS spectroscopic method as well as conductivity measurements. Their structures were suggested according to the results obtained.