In the present work, We study the structural and optical properties of (ZnO), which are prepared by thermal evaporation technique, where deposit (Zn) on glass substrates at different thicknesses (150,250,350)nm, deposited on glass substrate at R.T. with rate (5 nm sec-1). And then we make oxidation for (Zn) films at temperature (500) and using the air for one hour, and last annealing samples at temperature (400,500) for one hour. The investigation of (XRD) indicates that the (ZnO) films are polycrystalline type of hexagonal with a preferred orientation along (002) to all samples and analysis reveals that the intensity of this orientation increases with the increase of the thickness and annealing temperature. Optical properties measurement Transmittance (T) and Absorptance (A) of (ZnO) film show that the transmittance decreases with the increase of thickness and it increases after annealing, where high transmittance(92%) to thickness (150)nm is annealed at temperature (500) with wave length (800-1100)nm, which is suitable to solar cell. Optical energy bands gap is measured and investigated that it increases with the increase of thickness and annealing temperature.
The prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
Manganese-zinc ferrite MnxZn1-xFe2O4 (MnZnF) powder was prepared using the sol-gel method. The morphological, structural, and magnetic properties of MnZnF powder were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray (EDX), field emission-scanning electron microscopes (FE-SEM), and vibrating sample magnetometers (VSM). The XRD results showed that the MnxZn1-xFe2O4 that was formed had a trigonal crystalline structure. AFM results showed that the average diameter of Manganese-Zinc Ferrite is 55.35 nm, indicating that the sample has a nanostructure dimension. The EDX spectrum revealed the presence of transition metals (Mn, Fe, Zn, and O) in Mang
... Show MorePure nano Ferro fluid was synthesized by chemical co-precipitation method. The composite of polyaniline with nano sized Ferro fluid was prepared by In-situ–chemical oxidation polymerization method with ammonium per sulphate as an oxidant in aqueous hydrochloric acid under constant stirring at room temperature. The optical properties, absorption, transmission, optical energy gap (Eg) and optical constant refractive index (n) have been investigated. The value of the Eg decreased with increasing Ferro fluid concentration.
A new pavement technology has been developed in Highway engineering: asphalt pavement production is less susceptible to oxidation and the consequent damages. The warm mix asphalt (WMA) is produced at a temperature of about (10-40) oC lower than the hot asphalt paving. This is done using one of the methods of producing a WMA. Although WMA's performance is rather good, according to previous studies, as it is less susceptible to oxidation, it is possible to modify some of its properties using different materials, including polymers. Waste tires of vehicles are one of the types of polymers because of their flexible properties. The production of HMA, WMA, and WMA modified with proportions of (1, 1.5, and 2%) of rub
... Show MoreThis study included prepared samples of epoxy reinforced by the novolac , aluminum , glass powder and epoxy reinforced by aluminum , glass powder and epoxy alone .They are used as reinforced materials of volum fraction amounting 40% . The mechanical properties inclouded ( tensile , compressive and wear) where the wear test inclouded different applied loads (5,10,15) . From the results showed the epoxy reinforced by aluminum and glass powder has higher compressive strength (56.91) Mpa and higher tensile strength (132.2) Mpa .But the epoxy alone has higher wear rate and the epoxy reinforced by aluminum and glass powder which have higher elasticity of modulus from the tensile test (315.7) Mpa
Solar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si), poly-crystalline Silicon (pc-Si), amorphous Silicon (a-Si) and Cupper Indium Gallium di-selenide (CIGS) photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit v
... Show MoreNew nanotechnology-based approaches are increasingly being investigated for enhanced oil recovery (EOR), with a particular focus on heavy oil reservoirs. Typically, the addition of a polymer to an injection fluid advances the sweep efficiency and mobility ratio of the fluid and leads to a higher crude oil recovery rate. However, harsh reservoir conditions, including high formation salinity and temperature, can limit the performance of such polymer fluids. Recently, nanofluids, that is, dispersions of nanoparticles (NPs) in a base fluid, have been recommended as EOR fluids; however, such nanofluids are unstable, even under ambient conditions. In this work, a combination of ZrO2 NPs and the polyacrylamide (PAM) polymer (ZrO2 NPs–PAM) was us
... Show MoreAbstract:Porous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too. The XRD has been studied to determine the crystal structure and the crystalline size of PSi material
Porous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too.
The XRD has been studied to determine the crystal structure and the crystalline size of PSi material