The aim of this paper is to design fast neural networks to approximate periodic functions, that is, design a fully connected networks contains links between all nodes in adjacent layers which can speed up the approximation times, reduce approximation failures, and increase possibility of obtaining the globally optimal approximation. We training suggested network by Levenberg-Marquardt training algorithm then speeding suggested networks by choosing most activation function (transfer function) which having a very fast convergence rate for reasonable size networks. In all algorithms, the gradient of the performance function (energy function) is used to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training.
Seventy five adult virgin female Norway rats (60 experimental and 15 controls) were used toevaluate the effect of seeds of three herbs (Fennel, Cumin and Garden cress) on their mammaryglands. Experimental animals were fed with these herbs (each type of herb seeds was given to twentyexperimental rats) for fourteen days. Rats were sacrificed and mammary gland sections wereobtained, stained then morphometrically assessed. Serum prolactin level was performed too.Results revealed that Garden cress seeds are the strongest lactogenic agent among the three. BothFennel and Cumin seeds were shown to be very weak galactagogues.
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
Survival analysis is the analysis of data that are in the form of times from the origin of time until the occurrence of the end event, and in medical research, the origin of time is the date of registration of the individual or the patient in a study such as clinical trials to compare two types of medicine or more if the endpoint It is the death of the patient or the disappearance of the individual. The data resulting from this process is called survival times. But if the end is not death, the resulting data is called time data until the event. That is, survival analysis is one of the statistical steps and procedures for analyzing data when the adopted variable is time to event and time. It could be d
... Show MoreANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data
... Show MoreThis paper presents the results of experimental investigation carried out on concrete model piles to study the behaviour of defective piles. This was achieved by employing non-destructive tests using ultrasonic waves. It was found that the reduction in pile stiffness factor is found to be about (26%) when the defect ratio increased from (5%) to (15%). The modulus of elasticity reduction factor as well as the dynamic modulus of elasticity reduction factor increase with the defect ratio
In this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t
... Show MoreThe goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).
In this paper, author’s study sub diffusion bio heat transfer model and developed explicit finite difference scheme for time fractional sub diffusion bio heat transfer equation by using caputo fabrizio fractional derivative. Also discussed conditional stability and convergence of developed scheme. Furthermore numerical solution of time fractional sub diffusion bio heat transfer equation is obtained and it is represented graphically by Python.