Bark fiber has high potential use for composite reinforcement in biocomposite material. The aim of this study is the mechanical properties of Bark fiber reinforced polester composite with varying fiber weight fraction (0% , 5% , 10% , 20%, 30% and 40%) hand lay-up technique which was used to prepare the composite , specimens for tensile , flexural and impact test according to the ASTM D638 , ASTMD790 , and Iso-179. The over all results showed that the composite is reinforced with Bark fiber at weight (10%) higher mechanical properties , and the composite showed improved mechanical (Flexural).
In this study the Bauxite has been activated and used to prepare two complexes: Bauxite - urea and Bauxite - melamine, these complexes were merged and polymerized with formaldehyde to prepare the complex Bauxite polymer - urea - melamine - formaldehyde (modified Bauxite). In the Bauxite-urea complex XRD results indicate that the urea molecules penetrate among the layers of the crystal plane (110) of the Gibbsite mineral while in the Bauxite-melamine the interaction was at the outer surface of the Bauxite forming minerals because the relatively large volume of the melamine molecule. FT-IR results show the interaction of these two bases with Bauxite was mainly based on the hydrogen bonding and in less extent on the coordination between N l
... Show MoreThere has been an increase in demand for nanocomposite, which has resulted in large-scale manufacturers employing high-energy processes and harmful solvents. Because of this, the need for environmentally benign "green" synthesis processes has grown. Other methods for making nanocomposite include using plants and plant products, bacteria, fungi, yeast, and algae. Green synthesis has minimal toxicity and is safe for human health and the environment compared to other processes, making it the ideal option for creating nanocomposite materials. This work reveals an environmentally friendly synthesis method for magnetic nanocomposites. In particular, they were using an aqueous extract of Artemisia to obtain ZnO/Fe3O4
... Show MoreIn this work, a modified water displacement method (MWDM) was designed and used alongside geometry method (GEM), overflow method (OFM) and water displacement method (WDM) for determination of bulk volume of a porous solid. Their results were analyzed graphically and statistically. On testing against the data obtained by Suspension/Buoyancy Method (SBM) used as gold standard, it was found that only those generated by the modified water displacement method (MWDM) were of very high accuracy and precision. Apart from its reproducibility being within the recommended range for acceptability of a test method, the technique is cost-effective and easy to apply even with an ungraduated glass cylindrical tube. This can go a long way in enhancing th
... Show MoreThe fatigue is one of the major reasons for fracture of materials. Aluminum 7204 AA alloy with various heat treatments and (2.0) wt % of SiC nanoparticles were prepared by stir-casting method under rotating bending loading with ratio of stress (R= -1). The composite was strengthened by SiC particles size of) 10 (nanometre. The fatigue strength and life were obtained experimentally by the family of S-N curves for different heat treatments. The endurance limits (107cycles) for 7204 AA/ 2.0wt% SiC nano-composite fatigue strength as related to untreated nanocomposite was enhanced by 72 and 78.5% for T4 and T6, respectively.The improvement 
... Show MoreUsing three-point bending experiments, the effect of the particle size of SiO2 on the flexural properties of epoxy composites was investigated. Young modulus and flexural strength were studied for different weight percentage of filler (2,4,6,8 and 10) wt%.The size of SiO2 particles varied from micro (100um) to nano (12nm) .
Flexural strength and Young modul were found to increase with the filler content, but when the particle size decreased to the nanoscale, the Young module increased. Flexural strength was higher for microcomposites than nanocomposites.
The presence of construction wastes such as clay bricks, glass, wood, plastic, and others in large quantities causes serious environmental problems in the world. Where these wastes can be used to preserve the natural resources used in construction and reduce the impact of this problem on the environment, it also works to reduce the problem of high loads of concrete blocks. Clay bricks aggregate (AB) can be recycled as coarse aggregate and replaced with volumetric proportions of coarse aggregate by ( 5% and 10%), as well as the use of clay brick powder (PB) by replacing its weight of cement (5% and 10%) and reduced in the manufacture of concrete blocks (blocks). Four mixtures will be prepared and tested to learn how to re
... Show MoreIn this research, we prepared a polymer blend of polyvinylalcohol (PVA)/carrageenan/kaolinite by means of the solution cast approach. The composition of the blend was PVA in 1 gm by weight with 0.2 gm carrageenan as a plasticizer. The ratio of nanoclay varied between 1 and 5 wt%. Different properties were investigated in this study such as water vapor permeability, hardness, tear strength, color stability, thermal stability, and antibacterial activity. Water vapor permeability was decreased with increasing the ratio of nanoclay, while the values of hardness, tear strength, color stability, and thermal stability were increased. Also, the antibacterial activity examination with two types of bacteria, e.g.
... Show MoreRecently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% b
... Show MoreA numerical study has been carried out to investigate heat transfer by natural convection and radiation under the effect of magnetohydrodynamic (MHD) for steady state axisymmetric twodimensional laminar flow in a vertical cylindrical channel filled with saturated porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected on the system are Rayl
... Show MoreThe behavior of externally prestressed composite beams under short term loading has been studied. A computer program developed originally by Oukaili to evaluate curvature is modified to evaluate the deflection of prestressed composite beam under flexural load. The analysis model based on the deformation compatibility of entire structure that allows to determine the full history of strain and stress distribution along cross section depth, deflection and stress increment in the external tendons .
The evaluation of curvatures for the composite beam involves iterations for computing the strains vectors at each node at any loading stage. The stress increment determined using equations depended on the member deflection at points of connecti