Preferred Language
Articles
/
jih-348
δ-Hollow Modules
...Show More Authors

    Let R be a commutative ring with unity and M be a non zero unitary left R-module. M is called a hollow module if every proper submodule N of M is small (N ≪ M), i.e. N + W ≠ M for every proper submodule W in M. A δ-hollow module is a generalization of hollow module, where an R-module M is called δ-hollow module if every proper submodule N of M is δ-small (N δ  M), i.e. N + W ≠ M for every proper submodule W in M with M W is singular. In this work we study this class of modules and give several fundamental properties related with this concept

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
Couniform Modules
...Show More Authors

In this paper, we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
The Relationships between Relatively Cancellation Modules and Certain Types of Modules
...Show More Authors

Let R be a commutative ring with identity and M be unitary (left) R-module. The principal aim of this paper is to study the relationships between relatively cancellation module and multiplication modules, pure submodules and Noetherian (Artinian) modules.

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
On Primary Multipliction Modules
...Show More Authors

Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.

View Publication Preview PDF
Crossref
Publication Date
Mon May 15 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Max-Modules
...Show More Authors

   In this paper ,we introduce a concept of Max– module as follows: M is called a Max- module if ann N R is a maximal ideal of R, for each non– zero submodule N of M;       In other words, M is a Max– module iff (0) is a *- submodule, where  a proper submodule N of M is called a *- submodule if [ ] : N K R is a maximal ideal of R, for each submodule K contains N properly.       In this paper, some properties and characterizations of max– modules and  *- submodules are given. Also, various basic results a bout Max– modules are considered. Moreover, some relations between max- modules and other types of modules are considered.

... Show More
View Publication Preview PDF
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Semiprime Fuzzy Modules
...Show More Authors

  In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.

View Publication Preview PDF
Publication Date
Thu Oct 16 2014
Journal Name
Journal Of Advances In Mathematics
Strongly Rickart Modules
...Show More Authors

View Publication Preview PDF
Publication Date
Sun May 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Annsemimaximal and Coannsemimaximal Modules
...Show More Authors

        Some authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.

View Publication Preview PDF
Publication Date
Wed Sep 12 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On θ-Totally Disconnected and θ-Light Mappings
...Show More Authors

        In our research, we introduced new concepts, namely *and **-light mappings, after we knew *and **-totally disconnected mappings through the use of -open sets.

Many examples, facts, relationships and results have been given to support our work.

View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
On S*-Supplemented Modules
...Show More Authors

The main goal of this paper is to introduce and study a new concept named d*-supplemented which can be considered as a generalization of W- supplemented modules and d-hollow module. Also, we introduce a d*-supplement submodule. Many relationships of d*-supplemented modules are studied. Especially, we give characterizations of d*-supplemented modules and relationship between this kind of modules and other kind modules for example every d-hollow (d-local) module is d*-supplemented and by an example we show that the converse is not true.

View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu May 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Min (Max)-CS Modules
...Show More Authors

 In this paper, we give a comprehensive study of min (max)-CS modules such as a closed submodule of min-CS module is min-CS. Amongst other results we show that a direct summand of min (max)-CS module is min (max)-CS module. One of interested theorems in this paper is, if R is a nonsingular ring then R is a max-CS ring if and only if R is a min-CS ring.

View Publication Preview PDF