Undoped and Al-doped CdO thin films have been prepared by vacuum thermal evaporation on glass substrate at room temperature for various Al doping ratios (0.5, 1 and 2)wt.% . The films are characterized by XRD and AFM surface morphology properties. XRD analysis showed that CdO:Al films are highly polycrystalline and exhibit cubic crystal structure of lattice constant averaged to 0.4696 nm with (111) preferred orientation. However, intensity of all peaks rapidly decreases which indicates that the crystallinity decreases with the increase of Al dopant. The grain size decreases with Al content (from 60.81 to 48.03 nm). SEM and AFM were applied to study the morphology and to estimate the surface roughness of the obtained films. All films were homogeneous and smooth, with a characteristic spherical grain size depending on Al content. The (RMS) roughness of the films increases with the increase of Al dopant. The improvement of the structural and surface morphology properties of Al-doped CdO has potential applications for different optoelectronic device applications.
Electrophoretic Deposition (EPD) process offers various advantages like the fabrication of the ceramic coatings and bodies with dense packing, good sinterability and homogenous microstructure. The variables namely (applied potential, deposition time and sintering temperature) affected the development of hydroxyapatite (HAP) coatings. The coating weight and thickness were found to increase with the increase in applied potential or coating time. Sintering temperature was found to affect in change phases of the metal, furthermore the firing shrinkage of the HAP coating on a constraining metal substrate leads to serve cracking. XRD Characterization indicates the formation of a contamination free phase pure, and the optical micrographs show th
... Show MoreThis contribution provides an atomistic understanding into the impact of W, Nb, and Mo co-substitution at Hf-site of cubic HfO2 lattice to produce Hf1−xTMxO2 system at x = 25%. The calculations have been performed under the framework of density functional theory supported by Habbured parameter (DFT+U). Structural analysis demonstrates that the recorded lattice constants is in good coherence with the previously published results. For the lattice parameters, contraction by 1.33% comparing with the host system has been reported. Furthermore, the doping effect of TM on the band gap leads to its reduction in the resulting Hf0.75TM0.25O2 configurations. The partial density of states (PDOS) indicate that hybridization through localized electroni
... Show MoreThis contribution provides an atomistic understanding into the impact of W, Nb, and Mo co-substitution at Hf-site of cubic HfO2 lattice to produce Hf1−xTMxO2 system at x = 25%. The calculations have been performed under the framework of density functional theory supported by Habbured parameter (DFT+U). Structural analysis demonstrates that the recorded lattice constants is in good coherence with the previously published results. For the lattice parameters, contraction by 1.33% comparing with the host system has been reported. Furthermore, the doping effect of TM on the band gap leads to its reduction in the resulting Hf0.75TM0.25O2 configurations. The partial density of states (PDOS) indicate that hybridization through localized electroni
... Show MoreIn this work gold nanoparticles (AuNPs), were prepared. Chemical method (Seed-Growth) was used to prepare it, then doping AuNPs with porous silicon (PS), used silicon wafer p-type to produce (PS) the processes doping achieved by electrochemical etching, the solution etching consist of HF, ethanol and AuNPs suspension, the result UV-visible absorption for AuNPs suspension showed the single peak located at ~(530 – 521) nm that related to SPR, the single peak is confirmed that the NPs present in the suspension is spherical shape and non-aggregated. X-ray diffraction analysis indicated growth AuNPs with PS. compare the PS layer without AuNPs and with AuNPs doped for electrical properties and sensitivity properties we found AuNPs:PS is more
... Show Moreسمير خلف فياض * و محسن طالب د.نوال عزت عبد اللطيف*, مجلة الهندسة والتكنولوجيا, 2010
Effects of Boron on the structure of chloroplasts membrane isolated from cauliflower are investigated , using light scattering technique. Results obtained in this study suggest that Boron in the concentration range (0.1-5 µm) can fluidize the lipids of the chloroplast membrane due to different extent. Mechanisms by which Boron can change the lipid fluidity is discussed. Furthermore, an experimental evidence is presented to show that2µM Boron can mediate conformational changes in the membrane –bound proteins of the cauliflower’s chloroplast.
Aluminum alloy 5052 had been anodized by sulfuric acid as an electrolyte under constant voltage and the anodic oxide film produce will be testing by potentiostatic anodic polarization .Two variables, which were considered as important variables, were studied. These variables are anodizing time 15,30 min. and sealing time 10,20 min., and the test by potentiostatic anodic polarization through electro chemical polarization measurements in solutions of 1N na2so4 ( PH= 1 ). The results are discussed in light of the rate of ionic current flow through the coating during anodic polarization measurements.