In this paper we have presented a comparison between two novel integral transformations that are of great importance in the solution of differential equations. These two transformations are the complex Sadik transform and the KAJ transform. An uncompressed forced oscillator, which is an important application, served as the basis for comparison. The application was solved and exact solutions were obtained. Therefore, in this paper, the exact solution was found based on two different integral transforms: the first integral transform complex Sadik and the second integral transform KAJ. And these exact solutions obtained from these two integral transforms were new methods with simple algebraic calculations and applied to different problems. The main purpose of this comparison is the exact solutions, and until we show the importance of the diversity and difference of the kernel of the integral transform by keeping the period t between 0 and infinity.
In this paper, a sufficient condition for stability of a system of nonlinear multi-fractional order differential equations on a finite time interval with an illustrative example, has been presented to demonstrate our result. Also, an idea to extend our result on such system on an infinite time interval is suggested.
Abstract:
The models of time series often suffer from the problem of the existence of outliers that accompany the data collection process for many reasons, their existence may have a significant impact on the estimation of the parameters of the studied model. Access to highly efficient estimators is one of the most important stages of statistical analysis, And it is therefore important to choose the appropriate methods to obtain good estimators. The aim of this research is to compare the ordinary estimators and the robust estimators of the estimation of the parameters of
... Show MoreIn this paper, we develop the Hille and Nehari Type criteria for the oscillation of all solutions to the Fractional Differential Equations involving Conformable fractional derivative. Some new oscillatory criteria are obtained by using the Riccati transformations and comparison technique. We show the validity and effectiveness of our results by providing various examples.
In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.
In this paper, we consider inequalities in which the function is an element of n-th partially order space. Local and Global uniqueness theorem of solutions of the n-the order Partial differential equation Obtained which are applications of Gronwall's inequalities.
In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.
The aim of this article is to present the exact analytical solution for models as system of (2+1) dimensional PDEs by using a reliable manner based on combined LA-transform with decomposition technique and the results have shown a high-precision, smooth and speed convergence to the exact solution compared with other classic methods. The suggested approach does not need any discretization of the domain or presents assumptions or neglect for a small parameter in the problem and does not need to convert the nonlinear terms into linear ones. The convergence of series solution has been shown with two illustrated examples such (2+1)D- Burger's system and (2+1)D- Boiti-Leon-Pempinelli (BLP) system.
Some necessary and sufficient conditions are obtained that guarantee the oscillation of all solutions of two types of neutral integro-differential equations of third order. The integral is used in the sense of Riemann-Stieltjes. Some examples were included to illustrate the obtained results