This paper investigates an effective computational method (ECM) based on the standard polynomials used to solve some nonlinear initial and boundary value problems appeared in engineering and applied sciences. Moreover, the effective computational methods in this paper were improved by suitable orthogonal base functions, especially the Chebyshev, Bernoulli, and Laguerre polynomials, to obtain novel approximate solutions for some nonlinear problems. These base functions enable the nonlinear problem to be effectively converted into a nonlinear algebraic system of equations, which are then solved using Mathematica®12. The improved effective computational methods (I-ECMs) have been implemented to solve three applications involving nonlinear initial and boundary value problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between the proposed methods has been presented. Furthermore, the maximum error remainder () has been computed to prove the proposed methods' accuracy. The results convincingly prove that ECM and I-ECMs are effective and accurate in obtaining novel approximate solutions to the problems.
Die vorliegende Forschung handelt es um die Satzfelder, besonders das Mittelfeld des Satzes im deutschen und Arabischen. Diese Forschung wurde mit der Satzdefinition, Satzglieder begonnen, damit wir diese klar werden und dann werden die Felder des Satzes gut gekannt. Der erste Abschnitt schlieβt auch den Mittelfeld des Satzes und, wie man das Feld erkennen und bestimmen kann. Die Forschung untersucht auch. Ob es in der arabischen Sprache den selben Struktur wie im Deutschen gibt, z.B Bildung des Satzes sowie Satzfelder bezügllich das Mittelfeld.
Der zweite Abschnitt handelt sich um den arabischen Teil und behandelt die Wortarten im Arabischen sowie den Satz als auch Satzarten (Nominal- Verbal- Halbsatz).
Danach befinden
... Show MoreThis work, introduces some concepts in bitopological spaces, which are nm-j-ω-converges to a subset, nm-j-ω-directed toward a set, nm-j-ω-closed mappings, nm-j-ω-rigid set, and nm-j-ω-continuous mappings. The mainline idea in this paper is nm-j-ω-perfect mappings in bitopological spaces such that n = 1,2 and m =1,2 n ≠ m. Characterizations concerning these concepts and several theorems are studied, where j = q , δ, a , pre, b, b.