A new technique to study the telegraph equation, mostly familiar as damped wave equation is introduced in this study. This phenomenon is mostly rising in electromagnetic influences and production of electric signals. The proposed technique called as He-Fractional Laplace technique with help of Homotopy perturbation is utilized to found the exact and nearly approximated results of differential model and numerical example of telegraph equation or damped wave equation in this article. The most unique term of this technique is that, there is no worry to find the next iteration by integration in recurrence relation. As fractional Laplace integral transformation has some limitations in non-linear terms, to get the result of nonlinear term in this differential mode, He polynomials via homotopy techniques of iteration is proposed to find the result of the computation assignment. The obtained result by this proposed technique directed that this technique is quite ease to apply and convergent rapidly to exact solutions. Numerous examples are described to determine the stability and accuracy of the proposed technique with the graphical explanation.
The time fractional order differential equations are fundamental tools that are used for modeling neuronal dynamics. These equations are obtained by substituting the time derivative of order where , in the standard equation with the Caputo fractional formula. In this paper, two implicit difference schemes: the linearly Euler implicit and the Crank-Nicolson (CN) finite difference schemes, are employed in solving a one-dimensional time-fractional semilinear equation with Dirichlet boundary conditions. Moreover, the consistency, stability and convergence of the proposed schemes are investigated. We prove that the IEM is unconditionally stable, while CNM is conditionally stable. Furthermore, a comparative study between these two s
... Show MoreIn this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.
The variational iteration method is used to deal with linear and nonlinear differential equations. The main characteristics of the method lie in its flexibility and ability to accurately and easily solve nonlinear equations. In this work, a general framework is presented for a variational iteration method for the analytical treatment of partial differential equations in fluid mechanics. The Caputo sense is used to describe fractional derivatives. The time-fractional Kaup-Kupershmidt (KK) equation is investigated, as it is the solution of the system of partial differential equations via the Boussinesq-Burger equation. By comparing the results that are obtained by the variational iteration method with those obtained by the two-dim
... Show MoreIn this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreThis work aims to investigate the inhibition of vitality of Streptococcus mutans, which is the causative agent of caries. A 632.8 nm He-Ne laser with the output power of 4.5mW was used in combination with toluidine blue O (TBO) at the concentration of 50μg/ml as a photosensitizer. Streptococcus mutans was isolated from 35 patients if carious teeth. Three isolates were chosen and exposed to different energy densities of He – Ne laser light 3.8, 11.7, 34.5 and 104.1 J/cm². After irradiation, substantial reduction was observed in the number of colony forming units (CFU)/ ml. The reduction in the number of CFU was increasing as the dose increased.
In this article, the solvability of some proposal types of the multi-fractional integro-partial differential system has been discussed in details by using the concept of abstract Cauchy problem and certain semigroup operators and some necessary and sufficient conditions.
In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional partial differential equation with parameter. The algorithm for the numerical solution of this equation is based on implicit and an explicit difference method. Finally, numerical example is provided to illustrate that the numerical method for solving this equation is an effective solution method.
This article addresses a new numerical method to find a numerical solution of the linear delay differential equation of fractional order , the fractional derivatives described in the Caputo sense. The new approach is to approximating second and third derivatives. A backward finite difference method is used. Besides, the composite Trapezoidal rule is used in the Caputo definition to match the integral term. The accuracy and convergence of the prescribed technique are explained. The results are shown through numerical examples.
In this research article, an Iterative Decomposition Method is applied to approximate linear and non-linear fractional delay differential equation. The method was used to express the solution of a Fractional delay differential equation in the form of a convergent series of infinite terms which can be effortlessly computable.
The method requires neither discretization nor linearization. Solutions obtained for some test problems using the proposed method were compared with those obtained from some methods and the exact solutions. The outcomes showed the proposed approach is more efficient and correct.