A new technique to study the telegraph equation, mostly familiar as damped wave equation is introduced in this study. This phenomenon is mostly rising in electromagnetic influences and production of electric signals. The proposed technique called as He-Fractional Laplace technique with help of Homotopy perturbation is utilized to found the exact and nearly approximated results of differential model and numerical example of telegraph equation or damped wave equation in this article. The most unique term of this technique is that, there is no worry to find the next iteration by integration in recurrence relation. As fractional Laplace integral transformation has some limitations in non-linear terms, to get the result of nonlinear term in this differential mode, He polynomials via homotopy techniques of iteration is proposed to find the result of the computation assignment. The obtained result by this proposed technique directed that this technique is quite ease to apply and convergent rapidly to exact solutions. Numerous examples are described to determine the stability and accuracy of the proposed technique with the graphical explanation.
In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.
In this study, the electron coefficients; Mean energy , Mobility and Drift velocity of different gases Ar, He, N2 and O2 in the ionosphere have been calculated using BOLSIG+ program to check the solution results of Boltzmann equation results, and effect of reduced electric field (E/N) on electronic coefficients. The electric field has been specified in the limited range 1-100 Td. The gases were in the ionosphere layer at an altitude frame 50-2000 km. Furthermore, the mean energy and drift velocity steadily increased with increases in the electric field, while mobility was reduced. It turns out that there is a significant and obvious decrease in mobility as a result of inelastic collisions and in addition lit
... Show MoreThis work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some
... Show MoreFractional Er: YAG laser resurfacing is increasingly used for treating rhytides and photo aged skin because of its favorable benefit‐risk ratio. The multi-stacking and variable pulse width technology opened a wide horizon of rejuvenation treatments using this type of laser. To evaluate the efficacy and safety of the use of fractional 2940 nm Er: YAG laser in facial skin rejuvenation. Twelve female patients with mean age 48.3 years and multiple degrees of aging signs and solar skin damages, were treated with 2 sessions, one month apart by fractional Er: YAG laser. Each session consisted of 2 steps, the first step employed the use of the multi stack ablative fractional mode and the fractional long pulsed non-ablative mode settings were u
... Show More