Metal oxide nanocomposites (MONCs) manufacturing is increasingly gaining popularity. The primary cause of this is the broad range of applications for such materials, which include fuel cells, photovoltaics, cosmetics, medicine, semiconductor packing materials, water treatment, and catalysts. Due to their size, stability, high surface area, catalytic activity, simplicity in fabrication, and selectivity for particular reactions. The MONCs with various morphologies have been created by physical, chemical, and biological processes, such as sol-gel, hydrothermal, co-precipitation, solvothermal, and microwave irradiation. Eugenol (4-allyl-2-methoxyphenol) is a major component of clove essential oil and it was found in various plant groups, has been widely utilized, and famously stated to have a variety of important biological activities. It is a good starting material for the synthesis of a wide variety of derivatives with different activity. Due to the presence of many functional groups in its structure, including allyl (-CH2-CH=CH2), phenol (-OH), and methoxy (-OCH3). The eugenol was taken with metal oxides (zinc cobalt oxides ZnO: CoO) to synthesis [ZnO: CoO/ Eug] and (zinc ferric oxides ZnO: Fe2O3) to synthesis [ZnO: Fe2O3/ Eug] as nanocomposites by hydrothermal method and characterization the compounds using: (FT-IR, AFM, SEM, EDX, XRD) techniques. Then, they tested their biological activities through antimicrobial and antioxidant.
Background In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
In this paper Zener diode was manufactured using ZnO-CuO-ZnO/Si heterojunction structure that used laser induced plasma technique to prepare the nanofilms. Six samples were prepared with a different number of laser pulses, started with 200 to 600 pulses on ZnO tablet with fixed the number of laser pulses on CuO tablet at 300 pulses. The pulse energy of laser deposited was 900mJ using ZnO tablet and 600mJ using CuO tablet. All prepared films shown good behavior as Zener diode when using porous silicon as substrate.
Background: The aim in vitro study was to isolate and identify salivary mutans Streptococci and determine the ability of Green Tea Extracts and Nicotine to inhibit Growth, Biofilm Formation by salivary mutans streptococci. Materials and methods: This study included a convenient sample of 40 Iraqi volunteers aged 18–23 years old from College of Dentistry \University of Baghdad. Commercial green tea and nicotine were prepared in different concentration to use in agar diffusion method for detect the activity of extract, and ELISA reader in MTP was used to determine the ability of salivary mutans Streptococci to form biofilm in the presence / and absent of extracts.to measure the biofilm inhibition rate. Results: Mutans Streptococci were s
... Show MoreIn this work, zinc oxide nanoparticles (ZnONPs) and sawdust/epoxy composite (20:80) were mixed using a simple molding method with different ZnONPs concentrations of (0.1, 0.3, 0.5, 0.7, and 1.0 %). The samples of the nanocomposites were characterized by the Scanning Electron Microscopy (SEM) technique to demonstrate the homogeneity of the prepared ZnONPs/nanocomposites. The photocatalytic activity of the samples was examined using the methylene blue (MB) dye as a pollutant solution, through evaluation of the efficiency of the prepared compound in the treatment of organic pollutants under illumination by sunlight. The photocatalytic results showed that after 240 minutes of exposure to sunlight, the sample prepared using (0.5 vol.% of ZnON
... Show MoreSynthesis and preliminary biological evaluation of imidazo (2, 1-b) Thiazole derivatives is reported. Under Mannich conditions, a series of new imidazo (2, 1-b) Thiazole derivatives were synthesized. Starting from the reaction of 2- amino thiazole with 4- bromo phenyl bromide to produce 5-(4-bromo phenyl) imidazo (2, 1-b) thiazoles, following by introduce the substituted aminomethyl at position 6-by reacting with different aromatic amines under Mannich conditions to afford 6-secondary amine-5-(4-bromo phenyl) imidazo (2,1-b) thiazole in high yields.
FT-IR, 1H NMR, and 13C NMR techniques were used to characterize the synthesized derivatives. In addition, all compounds were tested for their antioxidant activity, and thr
... Show MoreHydrothermal technology has many advantages compared to other growth methods such as the availability of their simple equipment,catalyst-free growth,Environmental friendliness, less dangerous environmental, and low costs. Combine spinning method technology with Hydrothermal could improve the structural of ZnO NS by increasing the formation of ZnO NS due to influence of heat annealed treatments on the structure of ZnO NS. ZnONano-Sheets (NS)were prepared to employ hydrothermal process utilizing zinc acetate, that has the chemical composition (Zn (CH3CO2)2.2H2O),as a precursor. After preparing the material, it is deposited in two methods, the first being disti
... Show MoreMagnesium-doped Zinc oxide (ZnO: Mg) nanorods (NRs) films and pure Zinc oxide deposited on the p-silicon substrates were prepared by hydrothermal method. The doping level of the Mg concentration (atoms ratio of Mg to Zn was chosen to be 0.75% and 1.5%. X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) were performed to characterize the prepared films. X-ray diffraction analysis showed a decrease in the lattice parameters of the Mg-doped ZnO NRs. Under 10V applied bias voltage, the responsivity of p-n junction UV photodiode based on pure ZnO and Mg: ZnO with doping ratio (0.75% and 1.5%) was 0.06 A/W and (0.15A/W and 0.27A/W) at UV illumination of wavelength 365 nm respectively, 0.071 A/W and (0.084A/W and 0.11A/W) fo
... Show MoreThe characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.
Pure SnSe thin film and doped with S at different percentage (0,3,5,7)% were deposited from alloy by thermal evaporation technique on glass substrate at room temperature with 400±20nm thickness .The influences of S dopant ratio on characterization of SnSe thin film Nano crystalline was investigated by using Atomic force microscopy(AFM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Hall Effect measurement, UV-Vis absorption spectroscopy to study morphological, structural, electrical and optical properties respectively .The XRD showed that all the films have polycrystalline in nature with orthorhombic structure, with preferred orientation along (111)plane .These films was manufactured of very fine crystalline size in the ra
... Show More