The determination of captopril (CAP) using a new continuous flow injection analysis (CFIA) method was given in this work CAP in its pure state and some of its pharmaceutical preparations. The technique can be described as simple, fast, sensitive, easy to operate, and low-cost. The CAP reacted with ammonium ceric(IV) sulfate (ACS)2(NH4 )2SO4Ce(SO4)2. 3 H2O in an acidic medium and the reaction led to the formation of a white, slightly yellowish precipitate. The formed precipitate was studied using Ayah 6S×1-ST-2D Solar cell-CFI Analyzer, a through the reflection of accident light on the surfaces of the precipitate particles at (0-1800), expressed as the response of the transducer measured in (mV). Some chemical and physical parameters were studied to provide the optimal conditions for the study. The calibration curve within the range of (0.07-3.0) mmol/L was linear, with a correlation coefficient (r) value equal to (0.9983), and the percentage value of linearity (R2%) was (99.65). The method's detection limit (L.O.D.) of the new method was 272.5 ng/25 µL; it was calculated by diluting the minimum concentration in the calibration curve gradually. RSD% was less than 0.2% for 0.9, 1.5, and 3.0 mmol/L concentrations of C.A.P. for n=8. The method was successfully applied to estimate C.A.P. in three pharmaceutical preparations, each produced by a different company. The new method was compared with the UV-Spectrophotometric method (classical method) at λmax= 207.2 nm by using the method of standard additions. Both the t-test and the F-test were conducted to ensure that there wasn't a significant difference between the new method and the conventional one. The results of both tests showed, at a confidence level of 95%, that there was no significant difference.
Objectives This work presents laser coating of grade 1 pure titanium (Ti) dental implant surface with sintered biological apatite beta-tricalcium phosphate (β-TCP), which has a chemical composition close to bone. Materials and methods Pulsed Nd:YAG laser of single pulse capability up to 70 J/10 ms and pulse peak power of 8 kW was used to implement the task. Laser pulse peak power, pulse duration, repetition rate and scanning speed were modulated to achieve the most homogenous, cohesive and highly adherent coat layer. Scanning electron microscopy (SEM), energy dispersive X-ray microscopy (EDX), optical microscopy and nanoindentation analyses were conducted to characterise and evaluate the microstructure, phases, modulus of elasticity
... Show MoreThe purpose of the paper is to tind the degree of the approximation of a functions f be bounded , measurable and defined
in interval [a,h]by Bernstein polynomial in LP space 1 $ p < oo by
using Ditzian-Totik modulus of smootlmess and k 1n average modvlus of smoothness.
Rapid, reproducible and accurate method has been developed for the assay for of mebendazol (MBZ) residual assay. The method is based on alkaline hydrolysis of MBZ with sodium hydroxide then oxidation with N-bromosuccinimide (NBS) followed by coupling with 4-Bromoaniline (4-BA) to yield a highly colored product absorbed at maximum 434 nm. Regression analysis of linearity range was found (0.6-2.8) µg.ml-1. The optimum conditions that affect the oxidation were studied. The developed method was found to be precise with mean value of relative standard deviation (1.153- 1.303) and accurate with relative error (-0.5940-1.7821) .The calculated molar absorptivity and sandal sensitivity values of (29825 L.mol-1.cm-1), 0.0099 µg.cm-2 respe
... Show MoreRapid, reproducible and accurate method has been developed for the assay for of mebendazol (MBZ) residual assay. The method is based on alkaline hydrolysis of MBZ with sodium hydroxide then oxidation with N-bromosuccinimide (NBS) followed by coupling with 4-Bromoaniline (4-BA) to yield a highly colored product absorbed at maximum 434 nm. Regression analysis of linearity range was found (0.6-2.8) µg.ml-1. The optimum conditions that affect the oxidation were studied. The developed method was found to be precise with mean value of relative standard deviation (1.153- 1.303) and accurate with relative error (-0.5940-1.7821) .The calculated molar absorptivity and sandal sensitivity values of (29825 L.mol-1.cm
... Show MoreIn this work, the effect of preparing a composite of copper oxide nanoparticles with carbon on some of its optical properties was studied. The composite preparing process was carried out by exploding graphite electrodes in an aqueous suspension of copper oxide. The properties of the plasma which is formed during the explosion were studied using emission spectroscopy in order to determine the most important elements that are present in the media. The electron’s density and their energy, which is the main factor in the composite process, were determined. The particle properties were studied before and after the exploding process. The XRD showed an additional peak in the copper oxides pattern corresponding to the hexagonal graphite struct
... Show MoreA new simple and sensitive spectrophotometric method is described for quantification of Nifedipine (NIF) and their pharmaceutical formulation. The selective method was performed by the reduction of NIF nitro group to yield primary amino group using zinc powder with hydrochloric acid. The produced aromatic amine was submitted to oxidative coupling reaction with pyrocatechol and ammonium ceric nitrate to form orange color product measured spectrophotometrically with maximum absorption at 467nm. The product was determined through flow injection analysis (FIA) system and all the chemical and physical parameters were optimized. The concentration range from 5.0 to 140.0 μg.mL-1 was obeyed Beer’s law with a limit of detection and quantitatio
... Show MoreThe ascorbic acid content of juices of some fruits and pharmaceutical tablets of Vitamin C was determined by a homemade apparatus of DIE technique using a thermocouple as heat sensor. The method is simple, speed, low cost and the different types of turbid, colored samples can be analyzed without any problem. The results were of a valuable accuracy and precision, and the recovery of results was with acceptable values
This study investigates consecutive reaction assisted by pervaporation for the first time. It studies the saponification of diethyladipate DA with sodium hydroxide NaOH solution synchronous with separating ethanol from the reaction mixture through an aqueous – organic membrane. The effect of time on some variables such as: permeated ethanol concentration EtOH wt%, separation factor (α), concentration of NaOH solution CB in the reaction medium and the conversion of DA to monoethyladipate (the intermediate product) was studied. It was shown that EtOH wt% and the conversion increased with increasing time unlike CB but (α) showed the existence of maximum value during the time of experiment. The process of reaction assisted by pervaporation
... Show MoreLiquid – liquid interface reaction is the method for
preparation nanoparticles (NP'S) which depend on the super
saturation of ions that provide by using the system that consist from
toluene and water, the first one is above the second to obtain
nanoparticles (NP's) CdS at the interface separated between these
two immiscible liquid. The structure properties were characterized by
XRD-diffraction and transmission electron microscopy.
The crystalline size estimate from X-ray diffraction pattern
using Scherer equation to be about 7nm,and by TEM analysis give us
that ananosize is about 5 nm which give a strong comparable with
Bohr radius. Photoluminescence analysis give two emission peak,
the first one around
This study was performd on 50 serum specimens of patients with type 2 diabetes, in addition, 50 normal specimens were investigated as control group. The activity rate of LAP in patients (560.46 10.504) I.U/L and activity rate of LAP in healthy(10.58 4.39)I.U/L.The results of the study reveal that Leucine aminopeptidase (LAP) activity of type 2 diabetes patient s serum shows a high signifiacant increase (p < 0.001) compare to healthy subjects. Addition preparation leucine amide as substrate of LAP, identification melting point and spectra by FTIR. K