Chromene is considered a fused pyran ring with a benzene ring, which is found in many plants and is part of many important compounds such as anthocyanidins, anthocyanins, catechins, and flavanones. These compounds are included under the headings "flavonoids" and "iso-flavonoids." These compounds are well known as bioactive molecules with wide medicinal uses. According to these pharmacokinetic characteristics, many researchers are giving more attention to this type of compound and its derivatives. Many chromene derivatives have been synthesized to study their biological effects for the treatment of many diseases. Furthermore, the researcher displayed wide interest in finding new methods for synthesizing chromene derivatives. These methods depend on utilizing a new catalyst to increase the yield of this reaction or reduce the time of the reaction. On the other hand, new methods were found by using a new reactant and a new substrate. This review will present the most recent important methods for the synthesis of chromene derivatives as well as an examination of their biological activity.
New heterocyclic derivatives of quinoline are reported. Reaction of quinoline-2-thiol 4 with hydrazine hydrate gave 2-hydrazionoquinoline 5. Treatment of 5 with CS2 in pyridine afforded 1,2,4-triazolo-[4,3-a]- quinolin-1-2H-thione 6, whereas the reaction of 5 with carboxylic acids namely formic acid or acetic acid, yielded the 1,2,4-triazol-[4,3-a]-quinolin 7 or 5-methyl-1,2,4-triazolo [4,3-a]-quinoline 8 through ring closure. Diazotization of 5 under acidic conditions produced the fused tetrazole compound 9, tetrzolo-[1,5-a]- quinoline. Moreover, treatment of 5 with active methlyene compounds gave two pyrazole derivatives 10 and 11. Azomethines 12a-e were prepared through condensation of 5 with aromatic aldehydes or ketones.
Quantum mechanical computations is conducted using DFT (Density Functional Theory) and PM3 (Parameterized Model 3), also, using DFT of (B3LYP) with a 6-311++G (d, p) with G09 application. These molecular three components include structure, electronic charge density and energetic characteristics of chosen phytomedicine compounds. The impact of functional groups on physical characteristics were studied using myricetin, linebacker, and flavone because of their chemical structures. For phytomedicine compounds, we utilized quantum mechanical simulations to estimate bond length, energy, vibration(vib.) modes, charge density and mechanical properties (cruelty, strength, stiffness, for the measurements of the lengths and energy of the
... Show MoreNew 2-Mercaptobenzimidazole derivatives were synthesized. 4,5-disubsitituted 1,2,4-Triazole compounds 1b-2c were synthesized from 2-(benzylthio) benzimidazole compound a, which was then reacted with (NaH) in dioxane at a temperature of (0-5 C°) to produce the salt of compound a. Then the salt was reacted with ethyl chloro acetate to yield Ethyl 2-(benzylthio) benzimidazole acetate compound b. Compound b was converted to triazole derivatives by two pathways. The first pathway was reacting compound b with semicarbazide, thiosemicarbazide and phenylsemicarbazide in DMSO as a solvent to gain compounds 1b-3b, which were then
... Show MoreStarting from 4, - Dimercaptobiphenyl, a variety of phenolic Schiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis all analysis were performed in center of consultation in Jordan Universty.
The present study was designed to synthesize a number of new Ceftriaxone derivatives by its involvement with a series of different amines, through the chemical derivatization of its 2-aminothiazolyl- group into an amide with chloroacetyl chloride, which on further conjugation with these selected amines will produce compounds with pharmacological effects that may extend the antimicrobial activity of the parent compound depending on the nature of these moieties.
Ceftriaxone was first equipped with a spacer arm (linker) by the action of chloroacetyl chloride in aqueous medium and then further reacted with seven different aliphatic and aromatic amines which resulted in the production of the aimed final target products. The syntheses
... Show MoreNew derivatives of pyromellitamic diacids and pyromellitdiimides have been prepared by the reaction of one mole of pyromellitic dianhydride with two moles of aromatic amines, these derivatives were characterized by elemental analysis, FT-IR and melting point.
A series of new 2-quinolone derivatives linked to benzene sulphonyl moieties were performed by many steps: the first step involved preparation of different coumarins (A1,A2) by condensation of different substituted phenols with ethyl acetoacetate. The compound A1 was treated with nitric acid to afford two isomers of nitrocoumarin derivatives (A3) and (A4). The prepared compounds (A2, A3) were treated with hydrazine hydrate to synthesize different 2-quinolone compounds (A5,A6) while the coumarin treated with different amines gave compounds (A7,A8). Then the synthesized 2-quinolone compounds (A5-A8) treated with benzene sulphonyl chloride to afford new sulfonamide derivatives (A9-A12). The synthesized compounds were characterized by FT-IR, 1H
... Show MoreNew sulfonamide derivatives comprising azide, 1, 2, 3- triazole, azo , chalcone and Schiff base moieties had synthesized. The structures of the new compunds have been confirmed byFT-IR and ¹H-NMR spectra. The synthesized derivatives have been screened for antimicrobial and in vitro antioxidant properties. The results of this investigation revealed that the newly synthesized compounds have good antimicrobialand antioxidant activities.