Preferred Language
Articles
/
jih-3173
Enhancing Gas Sensing Performance of TiO2-ZnO nanostructures: Effect of ZnO Concentration
...Show More Authors

Gas sensors based on titanium dioxide (TiO2) and zinc oxide (ZnO) nanocomposites are considered energy-saving devices that are utilized to find dangerous or harmful gases in an environment. The performance of nitrogen dioxide (NO2) gas sensors have been improved by spin-coating a TiO2 and TiO2:ZnO nanocomposite with varying concentrations (90TiO2:10ZnO, 70TiO2:30ZnO, and 50TiO2:50ZnO). To correlate structural properties with gas-sensing behavior, structural and morphological characterization has been done using FESEM, XRD, and EDX.  Without any ZnO-specific crystalline phase, TiO2 X-ray diffraction was found to be indexed in the anatase crystalline structure. The ZnO is synthesized in the wurtzite phase with (002) orientation and has a smooth surface, according to the morphologies and crystalline structure of the films, which also indicated the presence of ZnO components with various crystallite sizes and lattice strains. Responses to NO2 are increased by low ZnO content. Additionally, at the average operating temperature of 250 oC, TiO2:ZnO shows a good response.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 20 2024
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Anti-Oxidant and Anti-Microbial Activities of [ZnO: CoO/ Eugenol] and [ZnO: Fe2O3/ Eugenol] Nanocomposites
...Show More Authors

Metal oxide nanocomposites (MONCs) manufacturing is increasingly gaining popularity. The primary cause of this is the broad range of applications for such materials, which include fuel cells, photovoltaics, cosmetics, medicine, semiconductor packing materials, water treatment, and catalysts. Due to their size, stability, high surface area, catalytic activity, simplicity in fabrication, and selectivity for particular reactions. The MONCs with various morphologies have been created by physical, chemical, and biological processes, such as sol-gel, hydrothermal, co-precipitation, solvothermal, and microwave irradiation. Eugenol (4-allyl-2-methoxyphenol) is a major component of clove essential oil and it was found in various plant groups, has

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Aug 31 2019
Journal Name
Iraqi Journal Of Physics
Manufacturing Zener diode using ZnO-CuO-ZnO/Si structures deposited laser induced plasma technique
...Show More Authors

        In this paper Zener diode was manufactured using ZnO-CuO-ZnO/Si heterojunction structure that used laser induced plasma technique to prepare the nanofilms. Six samples were prepared with a different number of laser pulses, started with 200 to 600 pulses on ZnO tablet with fixed the number of laser pulses on CuO tablet at 300 pulses. The pulse energy of laser deposited was 900mJ using ZnO tablet and 600mJ using CuO tablet. All prepared films shown good behavior as Zener diode when using porous silicon as substrate.

View Publication Preview PDF
Crossref
Publication Date
Wed May 31 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study the Effect of MgO Addition on Some of Physical Properties of ZnO
...Show More Authors

    Different percents(1.0,2.5,5.0 and 10)wt%of MgO powders were added to ZnO powder to study their effects on the physical properties of ZnO.Density, porpsity and water absorption of ZnO were decreased as MgO weigth percentage content increased. The values of vickers hardneess have double values especially at 1.0 wt % of MgO.

View Publication Preview PDF
Publication Date
Thu Feb 01 2024
Journal Name
Journal Of Materials Science
Investigations on TiO2–NiO@In2O3 nanocomposite thin films (NCTFs) for gas sensing: synthesis, physical characterization, and detection of NO2 and H2S gas sensors
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Investigating the Influence of Precursor Concentration on the Photodegradation of Methylene Blue using Biosynthesized ZnO from Pometia pinnata Leaf Extracts
...Show More Authors

The ZnO nanoparticles were synthesized at various precursor concentrations i.e. 0.05, 0.1, and 0.5 M by biosynthesis method based on Pometia pinnata Leaf Extracts. Initial nanoparticle concentration influenced the optical bandgap, shape, and structure of nanoparticles. The photodegradation process was carried out under UV illumination. The efficiency of MB degradation was determined by measuring the decrease in MB concentration and by analyzing the optical absorption at 663 nm recorded by UV-Vis spectroscopy. Results showed that the biosynthesized ZnO nanoparticles exhibited efficient photodegradation of MB, with a maximum degradation rate of 80% after 90 minutes of exposure to UV-C light. The study highlights the potential of Pometia pi

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 01 2017
Journal Name
Superlattices And Microstructures
Enhanced photoelectrochemical performance of ZnO nanorod arrays decorated with CdS shell and Ag2S quantum dots
...Show More Authors

View Publication
Scopus (20)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Effect of gamma irradiation and ZnO nano particles on the A.C electrical conductivity of polyaniline
...Show More Authors

Conducting polyaniline / ZnO nano composites are synthesized
using a simplified cheap method with one step in –situ chemical
polymerization, and AC conductivity (σac) of the prepared samples is
studied in the range of frequency from 50 Hz to 15MHz.). The
presence of polarons in the conjugated polymer chain are responsible
for the ac conductivity is reliance on the frequency in these
composites. The effect of increasing the ZnO nano particle
concentration irradiation and gamma radiation on the electric
conductivity was analyzed. The result showed that the
nanocomposite prepared has the highest conductivity, from pure
polyaniline and the exponential factor S was found increasing with
ZnO content it was 0

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Mar 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of Gamma Ray Irradiation on Structural and Optical Properties of ZnO Thin Films
...Show More Authors

In this research, the structural and optical measurements were made on the Zinc oxide (ZnO) films prepared by two methods once by using chemical spray pyrolysis technique, and another by using thermal evaporation technique before and after irradiation by Gamma –Ray (γ – rays) from source type (Cs 137) with an energy (0.611)MeV as a function of gamma dose (0.15,0.3 and 0.45) Gy. The thickness of all films prepared by two method was about (300 ± 50) nm. XRD is used to characterize the structural properties, the results demonstrated that all samples prepared by two method before and after irradiation have polycrystalline structure with a preferred orientation (002).Also it showed that the structural properties are weakly

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2020
Journal Name
Surfaces And Interfaces
Corrosion performance of electrospinning nanofiber ZnO-NiO-CuO/polycaprolactone coated on mild steel in acid solution
...Show More Authors

View Publication
Scopus (32)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Preparation and Study of morphological properties of ZnO nano Powder
...Show More Authors

In this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder

 

View Publication Preview PDF