The aim of this paper is to present a semi - analytic technique for solving singular initial value problems of ordinary differential equations with a singularity of different kinds to construct polynomial solution using two point osculatory interpolation. The efficiency and accuracy of suggested method is assessed by comparisons with exact and other approximate solutions for a wide classes of non–homogeneous, non–linear singular initial value problems. A new, efficient estimate of the global error is used for adaptive mesh selection. Also, analyze some of the numerical aspects relevant for the implementation, describe measures to increase the efficiency of the code and compare its performance with the performance of established standard codes for singular initial value problems. Many examples are presented to demonstrate the applicability and efficiency of the suggested method on one hand and to confirm the convergence order on the other hand.
يعد الإسناد الإجرائي من الركائز الأساسية في الإجراءات الجنائية وعلى الرغم من ذلك بلم تكن هناك دراسات واسعة ، اذ عد الفقه والقضاء هذا الموضوع من الشكليات المسلم بها في الإجراءات الجنائية فانه لم تتضمن غالبية التشريعات الإجرائية الجنائية النص صراحة على تعريف الإسناد الإجرائي وترك ذلك للفقه ، فالمشرع العراقي لم يحدد مفهوم الإسناد الإجرائي في قانون اصول المحاكمات الجزائية رقم (23) لسنة 1971 المعدل وكذلك في
... Show MoreAn efficient modification and a novel technique combining the homotopy concept with Adomian decomposition method (ADM) to obtain an accurate analytical solution for Riccati matrix delay differential equation (RMDDE) is introduced in this paper . Both methods are very efficient and effective. The whole integral part of ADM is used instead of the integral part of homotopy technique. The major feature in current technique gives us a large convergence region of iterative approximate solutions .The results acquired by this technique give better approximations for a larger region as well as previously. Finally, the results conducted via suggesting an efficient and easy technique, and may be addressed to other non-linear problems.
The aim of this paper is to study the quaternary classical continuous optimal control for a quaternary linear parabolic boundary value problems(QLPBVPs). The existence and uniqueness theorem of the continuous quaternary state vector solution for the weak form of the QLPBVPs with given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method. In addition, the existence theorem of a quaternary classical continuous optimal control vector governinig by the QLPBVPs is stated and demonstrated. The Fréchet derivative for the cost function is derived. Finally, the necessary conditions for the optimality theorem of the proposed problem is stated and demonstrated.
The wavelets have many applications in engineering and the sciences, especially mathematics. Recently, in 2021, the wavelet Boubaker (WB) polynomials were used for the first time to study their properties and applications in detail. They were also utilized for solving the Lane-Emden equation. The aim of this paper is to show the truncated Wavelet Boubaker polynomials for solving variation problems. In this research, the direct method using wavelets Boubaker was presented for solving variational problems. The method reduces the problem into a set of linear algebraic equations. The fundamental idea of this method for solving variation problems is to convert the problem of a function into one that involves a finite number of variables. Diff
... Show MoreAmong a variety of approaches introduced in the literature to establish duality theory, Fenchel duality was of great importance in convex analysis and optimization. In this paper we establish some conditions to obtain classical strong Fenchel duality for evenly convex optimization problems defined in infinite dimensional spaces. The objective function of the primal problem is a family of (possible) infinite even convex functions. The strong duality conditions we present are based on the consideration of the epigraphs of the c-conjugate of the dual objective functions and the ε-c-subdifferential of the primal objective functions.
The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m
... Show MoreIraqi EFL teachers face problems in teaching “English for Iraq Series” for primary public school pupils. In this paper, the researchers are going to identify the main problems faced by our teachers and try to find solutions to these problems. To achieve the aim of the study, list of questions asked and from teachers’ responses, the researchers have got an idea about the main problems which are related to textbook material, parents, learners, environment and technology. Therefore, the researchers adapted a questionnaire to achieve the purpose of the study with some changes and modifications. This questionnaire with five point scale (strongly agree, agree, undecided, disagree, strongly disagree). To achieve face validity, the
... Show MoreThe focus of this article is to add a new class of rank one of modified Quasi-Newton techniques to solve the problem of unconstrained optimization by updating the inverse Hessian matrix with an update of rank 1, where a diagonal matrix is the first component of the next inverse Hessian approximation, The inverse Hessian matrix is generated by the method proposed which is symmetric and it satisfies the condition of modified quasi-Newton, so the global convergence is retained. In addition, it is positive definite that guarantees the existence of the minimizer at every iteration of the objective function. We use the program MATLAB to solve an algorithm function to introduce the feasibility of
... Show MoreLet R be a commutative ring with identity, and let M be a unity R-module. M is called a bounded R-module provided that there exists an element x?M such that annR(M) = annR(x). As a generalization of this concept, a concept of semi-bounded module has been introduced as follows: M is called a semi-bounded if there exists an element x?M such that . In this paper, some properties and characterizations of semi-bounded modules are given. Also, various basic results about semi-bounded modules are considered. Moreover, some relations between semi-bounded modules and other types of modules are considered.