The present study aims to assess the effect of the Tharthar Canal as an outlet canal that feeds back from the Tharthar Lake on the quality of the Tigris water. Utilizing a Canadian Water Quality Index (CCME-WQI) for the protection of aquatic life Water samples were obtained every month from January to December of 2020. Six different sites were selected: four along the Tigris River and two on the Tharthar Canal. Seven ecological parameters were used to assess water quality depending on importance and availability: water temperature, Water Temperature, Turbidity, Dissolved Oxygen (DO), Total Dissolved Solids (TDS), pH, Nitrate (NO3-) and Phosphate ( . The study demonstrated that the water quality of the Tharthr canal ranked as a fair class, whereas that of the main river fluctuated from marginal class before the confluence area to fair class downstream of the confluence. Also, three variables, including water temperature, turbidity, and total dissolved solids, were not meeting water quality standards.
In this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical parame
... Show MoreIn this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended
use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical paramete
In this research, the water quality of the potable water network in
Al-Shuala Baghdad city were evaluated and compare them with the
Iraqi standards (IQS) for drinking water and World Health
Organization standards (WHO), then water quality index (WQI) were
calculator: pH, heavy metals (lead, cadmium and iron), chlorides,
total hardness, turbidity, dissolved oxygen, total dissolved solid and
electrical conductivity. Water samples are collected weekly during
the period from February 2015 to April 2015 from ten sites. Results
show that the chlorides, total dissolved solid and electrical
conductivity less than acceptable limit of standards, but total
hardness and heavy metals in some samples higher than acceptabl
Water Quality Index (WQI) as a tool to assess the water quality status provides advice related to the use of water quality monitoring data and it is a way for combining the complex water quality data into a single value or single statement.The present study was conducted on Al- Hilla river in the middle of Iraq from August 2012 to July 2013 at five selected stations in the river, from Al- Musaib city to Al- Hashimya at the south of Hilla to determine its suitability for aquatic environment (GWQI), drinking water (PWSI) and irrigation (IWQI).This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, water quality management, and decision making. According to th
... Show MoreThe assessment of a river water’ quality is an essential procedure of monitor programs and isused to collect basic environmental data. The management of integrated water resources in asustainable method is also necessary to allow future generations to meet their water needs. Themain objective of this research is to assess the effect of the Diyala River on Tigris River waterquality using Geographic Information System (GIS) technique. Water samples have beencollected monthly from November 2017 to April 2018 from four selected locations in Tigris andDiyala Rivers using the grab sampling method. Fourteen parameters were studied which areTurbidity, pH, Dissolved Oxygen, Biological Oxygen Demand, Electrical Conductivity, TotalDissolved Solids,
... Show MoreThe present study is considered the first on this sector of the Tigris River after 2003. It is designed for two aims, the first is to demonstrate the seasonal variations in physicochemical parameters of Tharthar-Tigris Canal and Tigris River; the second is to explain the possible effects of canal on some environmental properties in the Tigris River. Water samples were being collected monthly. Six sampling sites were selected, two on Tharthar Canal and four along the Tigris River, one before the confluence as a control site and the others downstream the confluence with the canal. For a period from January to December 2020, nineteen physicochemical parameters were investigated including air and water temperature, turbidity, electrical cond
... Show MoreThis study investigates the effects of Al-Doura oil refinery effluent, in Baghdad city, on the water quality of the Tigris River using the Canadian Water Quality Index (CCME WQI) and Rivers Maintaining System (1967). Water samples were collected monthly from Tigris River at three stations, which are Al-Muthanna Bridge (upstream), Al-Doura Refinery (point source), and Al–Zafaraniya city (downstream) from October 2020 to April 2021. Fourteen water quality parameters were studied, namely pH (6.50-8.10), Water Temperature (WT) (5.00-27.00 °C), Electrical Conductivity (EC) (877.00-1192.00 μs/cm), Dissolved Oxygen (DO) (5.03-7.57 mg/L), Biological Oxygen demand (BOD) (0.53-2.23 mg/L), Total Dissolved S
The alteration in the hydrological regime in Iraq and the anthropogenic increasing effect on water quality of a lotic ecosystems needs to continuous monitoring. This work is done to assess the water quality of Tigris River within Baghdad City. Five sites were selected along the river and ten physicochemical parameters and Overall Index of Pollution (OIP) were applied to assess the water quality for the period between November 2020 and May 2021, the studied period were divided into dry and wet seasons. These parameters were water temperature, pH, dissolved oxygen (DO), biological oxygen demand (BOD), total hardness, alkalinity, turbidity, total phosphorus, total nitrogen, electrical co
The study aims to build a water quality index that fits the Iraqi aquatic systems and reflects the environmental reality of Iraqi water. The developed Iraqi Water Quality Index (IQWQI) includes physical and chemical components. To build the IQWQI, Delphi method was used to communicate with local and global experts in water quality indices for their opinion regarding the best and most important parameter we can use in building the index and the established weight of each parameter. From the data obtained in this study, 70% were used for building the model and 30% for evaluating the model. Multiple scenarios were applied to the model inputs to study the effects of increasing parameters. The model was built 4 by 4 until it reached 17 parame
... Show MoreThis comprehensive study investigates has been made to assess the water quality of Al-Gharraf River, which considered the main branch of Tigris River south of Iraq using the overall Index of Pollution (OIP), depending on 9 physical, chemical, and biological important parameters of water quality were analyzed: hydrogen ion concentration (pH), turbidity (NTU), total dissolved solid (TDS), dissolved oxygen (DO), biological oxygen demand (BOD5) , total hardness (TH), sulfate (SO4), nitrate (NO3),and fecal coliform (FC), which measured monthly at twenty one stations on the river during 2016-2017. Water quality deterioration has occurred in the last ten stations, consequently, the health status of the river
... Show More