A new approach and the developed FIA technique with many advantages (economic, fast, simple, accurate, and high throughput) are used to determine the decongestant drugs (Phenylephrine.HCl, Oxymetazoline.HCl) in biological samples, pharmaceutical formulations, and pure samples via continuous flow injection technique by oxidative coupling reaction, where the method depends on the interaction of the decongestant drug with organic reagents to produce colored compounds, where Phenylephrine reacts with 4-AAP at λmax503 nm to produce a red compound, and the Beer’s law range of 10-600 μg.mL-1 . As for Oxymetazoline, it reacts with DNPH at λmax 631nm to produce a green compound with a linear dynamic range of 5-400 μg/mL. The limits of detection were 9.24 and 4.67 μg.mL-1, respectively. The veracity of recovery (%) was 100.24, 100.68, RSD% were 3.44, 2.51 and sampling was 60,77 sample.h-1 for PHE and OXY successively. Distilled water was used as a carrier to transport chemicals within the minute ports of the new system. Statistical data treatment using analysis of variance one-way ANOVA was used for the determination of drugs in dosage forms, and the results obtained were compared with the official method (AOAC) and British pharmacopeia.
A new flow injection spectrophotometric method is described for the determination of copper ion Cu(II) in water samples (tap water and river water).The proposed method based on the formation of red complex [Cu(L)2(NO3)2] which has a maximum absorption at λmax=490 nm. Linear range for Cu (II) was from 5-70μg/mL with detection limit 2.55μg/mL. The effect of physical and chemical parameters were evaluated .The proposed method was applied successfully for determination of copper (II) in the tap and river water. [Cu(L)2(NO3)2] complex was prepared in a (2:1) mole ratio as ( reagent: copper (II)).The analytical reagent formed by reaction of thymol with 4-aminoantipyrine at room temperature. The metal complex was characterized by IR, UV-Visi
... Show MoreThe research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL
A new spectrophotometric flow injection method has been establish for the determintaions of some catecholaminedrugs
Furosemide drug determination in pharmaceutical and biological urine samples using a novel continuous flow-injection analysis technique that is simple, rapid, sensitive and economical. The complex formed by the reaction of furosemide and O-phenylenediamine with oxidative agent K3[Fe(CN)6] to produce an orange-yellow colored product at 460 nm was the basis for the proposed method. The proposed method’s linearity ranges (3-100) μg.mL-1and (1-50) μg.mL-1 for CFIA/merging zone methods and batch .The detection limit and Limit of quantification values were 2.7502 μg.mL-1 and 9.1697 μg.mL-1 the relative standard deviation was 0.7143 %, and the average recovery is 98.80%
... Show MoreContinuous flow injection analysis (CFIA) is one of the simplest, easiest, and multilateral analytical automation methods in moist chemical analysis. This method depends on changing the physical and chemical properties of a part of the specimen spread out from the specimen injected into the carrier stream. The CFIA technique uses automatic analysis of samples with high efficiency. The CFIA PC compatibility also allows specimens to be treated automatically, reagents to be added, and reaction conditions to be closely monitored. The CFIA is one of the automated chemical analysis methods in which a successive specimen sample is to be estimated and injected into a vector stream from a flowing solution that meets the reagent and mixes at a spe
... Show MoreMefenamic acid belongs to non-steroidal anti-inflammatory drugs that are used widely for the treatment of analgesia. Our aim from this study is to establish a new assay for the quantitative determination of mefenamic acid (MFA) in the pharmaceutical sample by two sensitive and rapid flow injection-fluorometric methods. A homemade fluorometer was used in fluorescence measurements, which using solid-state laser diode 405 and 532 nm as a source, combined with a continuous flow injection technique. The first method depends on the effect of MFA on calcein blue (CLB) fluorescence at 405 nm. Another method is a study of rhodamine-6G (Rh-6G) fluorescence after adding MFA, and recording at 532 nm. Optimum parameters as fluorescent dye concen
... Show MoreA batch and flow injection (FI) spectrophotometric methods are described for the determination of barbituric acid in aqueous and urine samples. The method is based on the oxidative coupling reaction of barbituric acid with 4-aminoantipyrine and potassium iodate to form purple water soluble stable product at λ 510 nm. Good linearity for both methods was obtained ranging from 2 to 60 μg mL−1, 5–100 μg mL−1 for batch and FI techniques, respectively. The limit of detection (signal/noise = 3) of 0.45 μg mL−1 for batch method and 0.48 μg mL−1 for FI analysis was obtained. The proposed methods were applied successfully for the determination of barbituric acid in tap water, river water, and urine samples with good recoveries of 99.92
... Show MoreAs material flow cost accounting technology focuses on the most efficient use of resources like energy and materials while minimizing negative environmental effects, the research aims to show how this technology can be applied to promote green productivity and its reflection in attaining sustainable development. In addition to studying sustainability, which helps to reduce environmental impacts and increase green productivity, the research aims to demonstrate the knowledge bases for accounting for the costs of material flow and green productivity. It also studies the technology of accounting for the costs of material flow in achieving sustainable development and the role of green productivity in achieving sustainable development. According
... Show MoreA new design of manifold flow injection (FI) coupling with a merging zone technique was studied for sulfamethoxazole determination spectrophotometrically. The semiautomated FI method has many advantages such as being fast, simple, highly accurate, economical with high throughput . The suggested method based on the production of the orange- colored compound of SMZ with (NQS)1,2-Naphthoquinone-4-Sulphonic acid Sodium salt in alkaline media NaOH at λmax 496nm.The linearity range of sulfamethoxazole was 3-100 μg. mL-1, with (LOD) was 0.593 μg. mL-1 and the RSD% is about 1.25 and the recovery is 100.73%. All various physical and chemical parameters that have an effect on the stability and development of
... Show MoreA newly developed analytical method was conducted for the determination of Ketotifen fumarate (KTF) in pharmaceuticals drugs via quenching of continuous fluorescence of 9(10H)-Acridone (ACD). The method was applied using flow injection system of a new homemade ISNAG fluorimeter with fluorescence measurements at ± 90◦ via 2×4 solar cell. The calibration graph was linear in the range of 1-45 mmol/L, with correlation coefficient r = 0.9762 and the limit of detection 29.785 µg/sample from the stepwise dilution for the minimum concentration in the linear dynamic ranged of the calibration graph. The method was successfully applied to the determination of Ketotifen fumarate in two different pharma
... Show More