Graphene-carbon nitride can be synthesized from thiourea in a single step at a temperature of four hours at a rate of 2.3 ℃/min. Graphene-carbon nitride was characterized by Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), scanning electron microscopy, and spectrophotometry (UV-VIS). Graphene-carbon nitride was found to consist of triazine and heptazine structures, carbon, and nitrogen. The weight percentage of carbon and the atomic percentage of carbon are 40.08%, and the weight percentage of nitrogen and the atomic percentage of nitrogen are 40.08%. Therefore, the ratio and the dimensions of the graphene-carbon nitride were characterized by scanning electron microscopy, and it was found that the radius was within the range of (2 µm-147.1 nm). In addition, it was found that it absorbed light in the visible field (VIS). The objective of the manufacture and characterization of graphene-carbon nitride for use in the manufacture of a selective electrode for an organic pollutant (currently used in the manufacture of a selective electrode for the analysis of organic dye).
The purpose of this study is to diagnose factors that effect Thi-Qar behavioral intention to use internet. A sample of (127) internet users of university staff was taken in the study and were analyzed by using path analyze . The study concluded that there is a set of affecting correlation. It was founded that exogenous variables (gender, income, perceived fun, perceived usefulness, Image, and ease of use) has significant effect on endogenous (behavioral intention) . The result of analysis indicated that image hopeful gained users comes first, ease of use secondly, perceived fan and perceived usefulness on (dependent variables (daily internet usage and diversity of internet usage. Implication of these result are discussed . the st
... Show MoreIn this study, we derived the estimation for Reliability of the Exponential distribution based on the Bayesian approach. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .We derived posterior distribution the parameter of the Exponential distribution under four types priors distributions for the scale parameter of the Exponential distribution is: Inverse Chi-square distribution, Inverted Gamma distribution, improper distribution, Non-informative distribution. And the estimators for Reliability is obtained using the two proposed loss function in this study which is based on the natural logarithm for Reliability function .We used simulation technique, to compare the
... Show MoreA comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro
... Show MoreIn this study, different methods were used for estimating location parameter and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment estimation (ME),and approximation estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile as estimation for distribution f
... Show MoreLongitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.
In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.
The longitudinal balanced data profile was compiled into subgroup
... Show MoreThe main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreIn this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through Monte Carlo simulation technique were made depend on mean squared error (MSE) criteria
The comparison of double informative priors which are assumed for the reliability function of Pareto type I distribution. To estimate the reliability function of Pareto type I distribution by using Bayes estimation, will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of Pareto type I distribution . Assuming distribution of three double prior’s chi- gamma squared distribution, gamma - erlang distribution, and erlang- exponential distribution as double priors. The results of the derivaties of these estimators under the squared error loss function with two different double priors. Using the simulation technique, to compare the performance for
... Show More