In this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indicates the broadening of diffraction peaks for nanoparticles that are not ideal crystals. The extra broadening of the diffraction peak may lead to a miscalculation of the nanoparticle size. We use the Williamson-Hall method to directly compute and discuss the particle size and micro-strain of SnO2 nanoparticles and compare them with results obtained using the Scherrer method. In conclusion, the straight line has been derived due to Williamson–Hall methods demonstrating the nanoparticles' uniformity.
The response of the combustor’s liner to the air-flow that passes through it is the key reason for the combustion chambers noise, hence the instabilities of those chambers that decreases the mechanical efficiency of such sections, by increased its mechanical vibrations, which increases the failure rate created during originating of the cracks spreading by the shakes producing by the series of high-level frequencies. Accordingly, any work debating the impact of the context of liners in the combustion chamber can provide grasping for the combustion noise generated by the undesirable vibrations, and benefits the industrial firms to design an ideal production procedure which increases the lifespan of the combustor. The goal of this work is
... Show MoreIn this research the natural frequency of a cracked simple supported beam (the crack is in many places and in different depths) is investigated analytically, experimentally and numerically by ANSYS program, and the results are compared. The beam is made of iron with dimensions of L*W*H= (0.84*0.02* 0.02m), and density = 7680kg/m3, E=200Gpa. A comparison made between analytical results from ANSYS with experimental results, where the biggest error percentage is about (7.2 %) in crack position (42 cm) and (6 mm) depth. Between Rayleigh method with experimental results the biggest error percentage is about (6.4 %) for the same crack position and depth. From the error percentages it could be concluded that the Rayleigh method gives
... Show MoreThe present work investigates the effect of; superficial air velocities of: 1, 3, and 6 cm/s for two types of perforated distributor on hydrodynamic characteristic in a gas-liquid dispersion column of; air-water, and airaqueous-n-propanol solution. Bubble distribution, gas holdup, and power consumption are parameters take in consideration. Experimental work was carried out in perspex column of 8.5 cm inside diameter and 1.5 m height. Two types of bubble generator (perforated plate) were fixed at the bottom of the column; plate A (99 holes of 0.5 mm diameter and free area of 0.34%), plate B (20 holes of 1.5 mm diameter and free area of 0.62%). Photographic technique was used to measure the bubble parameters. The experimental results were
... Show MoreUsing photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po
... Show MoreIn this article the nanoparticles synthesis of ZnO (Nps) by using the precipitation method at concentrations range (0.5, 0.25, 0.125, 0.0625, 0.03125) mg/mL and then activity was examined against Streptococcus spp that causing dental caries in vitro by well diffusion method, find these concentrations effected in these bacteria and better concentration is 0.03125. ZnO Nps were characterization by EDS to prove this particles are ZnO, and also characterized by atomic force microscope (AFM), X-ray Diffraction (XRD) and TEM, from these technic found that the average size about 30.52 nm and hexagonal shape. The UV-visible result reveals that the large band is observed at 340.8 nm, Zeta potential show that the surface charge is 30.19 mv an
... Show MoreThe importance of physical and nonphysical architectural design values made architectural designers need good experience to be experts of architectural values reasonably without neglecting any value in the design process. The importance of such values made that ignoring any values and mistakes occurs in the design process. Simultaneously, architectural designers' different nature and the difference in their experiences are causing different understandings of the design values, thus causing architectural mistakes. The research problem appears from the randomly propagating of mistakes in contemporary architecture, which is about to become a phenomenon in Al Sulaymaniyah city. The research aims to find the main reason
... Show MorePurpose: This study aimed to compare the stability and marginal bone loss of implants inserted with flapped and flapless approaches 8 weeks after surgery and 3 months after loading. Material and Methods: Thirty SLActive implants were inserted in 11 patients and early loaded with final restoration 8 weeks after healing period. The stability values determined by Osstell and the marginal bone loss measured by CBCT at the initial time (1st) and 8 weeks of the healing period (2nd) and 3 months after loading (3rd). Results: The overall survival rate was 100%. A significant increase in the 3rd implant stability value in the age of ˂ 40. A significant decrease in the 2nd implant stability value in both gender and traumatic zone with a flapless app
... Show MoreIn this research study the effect of fish in alternating electrical properties at room temperature copper oxide membranes and fish prepared in a manner different thermal spraying chemical on a thin glass bases and heated