The wavelets have many applications in engineering and the sciences, especially mathematics. Recently, in 2021, the wavelet Boubaker (WB) polynomials were used for the first time to study their properties and applications in detail. They were also utilized for solving the Lane-Emden equation. The aim of this paper is to show the truncated Wavelet Boubaker polynomials for solving variation problems. In this research, the direct method using wavelets Boubaker was presented for solving variational problems. The method reduces the problem into a set of linear algebraic equations. The fundamental idea of this method for solving variation problems is to convert the problem of a function into one that involves a finite number of variables. Different numerical examples were given to demonstrate the applicability and validity of this method using the Matlab program. Also, the results of this technique were compared with the exact solution, and graphs were added to these examples to test the convergence of Wavelet Boubaker polynomials using this method.
In this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic. We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness
Most dental supplies don't seem to be much of a barrier against germ infiltration. Therefore, the filling must be done with perfect caution and high antimicrobial effectiveness. When dental erosion occurs due to germs that lead to caries, a dental filling is used, creating a small microscopic space between the dental filling and the root end infiltration. This allowed the tooth to be penetrated for the second time, which was the research problem. Adding two compounds to antibacterial fillers (zinc polycarboxylate cement) made them work better: Firstly, was zinc oxide (ZnO) that was made chemically, and secondly, was green ZnO nanoparticles that were made from orange peels and mixed with ZPCC in different amounts. The study was conducte
... Show MoreThe influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstr
... Show MoreAccording to the circumstances experienced by our country which led to Occurrence of many crises that are the most important crisis is gaining fuel therefore , the theory of queue ( waiting line ) had been used to solve this crisis and as the relevance of this issue indirect and essential role in daily life .
This research aims to conduct a study of the distribution of gasoline station in (both sides AL – kharkh and AL Rusafa, for the purpose of reducing wasting time and services time through the criteria of the theory of queues and work to improve the efficiency of these stations by the other hand. we are working to reduce the cost of station and increase profits by reducing the active serv
... Show MoreThe aim of this paper is to derive a posteriori error estimates for semilinear parabolic interface problems. More specifically, optimal order a posteriori error analysis in the - norm for semidiscrete semilinear parabolic interface problems is derived by using elliptic reconstruction technique introduced by Makridakis and Nochetto in (2003). A key idea for this technique is the use of error estimators derived for elliptic interface problems to obtain parabolic estimators that are of optimal order in space and time.
Acquires this research importance of addressing the subject (environmental problems) with
age group task, a category that children pre-school, and also reflected the importance of
research, because the (environmental problems) constitute a major threat to the continuation
of human life, particularly the children, so the environment is Bmchkladtha within
kindergarten programs represent the basis of a hub of learning where the axis, where the
kindergarten took into account included in the programs in order to help the development of
environmental awareness among children and get them used to the sound practices and
behaviors since childhood .
The research also detected problem-solving skills creative with kids Riyad
In this paper, a new class of nonconvex sets and functions called strongly -convex sets and strongly -convex functions are introduced. This class is considered as a natural extension of strongly -convex sets and functions introduced in the literature. Some basic and differentiability properties related to strongly -convex functions are discussed. As an application to optimization problems, some optimality properties of constrained optimization problems are proved. In these optimization problems, either the objective function or the inequality constraints functions are strongly -convex.
The research aims to detect the problems of educational reality faced by university professors and identify statistically significant differences in the academic problems of university instructors. It has adopted an analytical descriptive research approach to achieve research objectives and identifies the study community with professors of public and private universities. A random sample of 250 instructors was selected for the purpose of applying the questionnaire to them, knowing the academic problems encountered in the course of their work at universities, and adopting appropriate statistical means to process and analyze the data. The research concluded with a set of results, including that all fields (infrastructure, admission of
... Show MoreInternational Journal on Technical and Physical Problems of Engineering
Kurdistan power system is expanded along years ago. The electrical power is transmitted through long transmission lines. The main problem of transmission lines is active and reactive power losses. It is important to solve this issue, unless, the most of electrical energy will lost over transmission system. In this study, High Voltage Direct Current links/bipolar connection were connected in a power system to reduce the power losses. The 132kV, 50 Hz, 36 buses Kurdistan power system is used as a study case. The load flow analysis was implemented by using ETAP.16 program in which Newton-Raphson method for three cases. The results show that the losses are reduced after inserted HVDC links.