Objectives: Obesity rates have increased globally with increase in the incidence of comorbidities especially type 2 diabetes mellitus. A cross-sectional study was conducted on healthy obese adults to estimate: (i) comparisons of anthropometric indicators, lipid profile, and glycemic profile in obese compared with non-obese, and (ii) the association of anthropometrics and lipid profile with glycemic profile in obese adults. Methods: The study includes 120 individual with aged ranged (25 – 55) years were enrolled in this study. They were divided into two groups: group one (G1) consist of 90 patients with a body mass index (BMI) of more than 25 kg/m2. Group two (G2) of 30 healthy adults as a control group with (BMI) of less than 25 kg/m2.waist circumference (WC), hip circumference (HC), and waist/hip ratio (WHR) as anthropometric indicators, and fasting serum lipid profile, glycated hemoglobin (HbA1c), and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) as biochemical variables were assessed. Statistical significance (α) was set at (p<0.05).Results: Based on independent samples T-test analysis acted as a significant comparison between non-obese and obese groups, anthropometrics and biochemical variables exhibited highly significant higher in obese compared with non-obese. Also, a positive significant correlation was found between WC and WHR with both of HOMA-IR and HbA1c. Finally, a positive significant association of HOMA-IR with triglycerides (TG), total cholesterol (TC), very low-density lipoprotein cholesterol (VLDL-C), low-density lipoprotein cholesterol (LDL-C) except for high-density lipoprotein cholesterol (HDL-C), no significance was found as well as HbA1c showed only positive significant association with LDL-C. In conclusion, the present study demonstrated that WC was the strongest indicator for increasing HOMA-IR than WHR. Also, this study revealed that abnormalities in lipid profile in obese participants have shown strong positive association with HOMA-IR, particularly LDL-C.
Ni and Cd complexes of new Schiff base derived from 5-Amino-2-phenyl-2,4-dihydro-pyrazol-3-one with 4-chlorobenzalaldehyde (A) , 2-Hydroxy-benzalaldehyde (B) and 4-Hydroxy-benzaldehyde (C) have been prepared and characterized by elemental analysis , molar conductivity measurements , FTIR , UV- vis , 1HNMR, mass spectrometer and magnetic susceptibility. Analytical data revealed that six complexes were a distorted tetrahedral geometry and exhibited (1:1) metal :ligand ratio. The biological activity for the three ligands and its complexes were studied
The reaction of starting materials (L-asCl2):bis[O,O-2,3;O,O-5,6-(chloro(carboxylic) methylidene)]- -L-ascorbic acid] with glycine gives new product bis[O,O-2,3,O,O-5,6-(N,O-di carboxylic methylidene N-glycine)-L-ascorbic acid] (L-as-gly) which is isolated and characterized by, Mass spectrum UV-visible and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the (L-as-gly) with M+2; Co(II) Ni(II) Cu(II) and Zn(II) has been characterized by FT- IR , Uv-Visible , electrical conductivity, magnetic susceptibility methods and atomic absorption and molar ratio . The analysis showed that the ligand coordinate with metal ions through mono dentate carboxylic resulting in six-coordinated with Co(II) Ni(II) Cu(II) ions while with
... Show MoreIntroduction to Medical and Biological Statistics for Pharmacy Students and Medical Groups (Undergraduate & Postgraduate) - ISBNiraq.org
The present study envisaged utilizing 4-aminoantipyrine as key intermediate for the synthesis of some new derivatives bearing anti-bacterial and anti-cancer activities moieties viz., antipyrine diazenyl benzaldehydes 2(ad) which were obtained by coupling of diazotized 4-aminoantipyrine (1) with substituted benzaldehydes at 0◦C (iced) temperature. The other antipyrine derivatives where containing bis heterocycles like bis thiazolidinone-antipyrine (4), bis imidazolidinone -antipyrine (5) and bis azetidinone -antipyrine (6).These compounds were prepared through the reaction between 4- aminoantipyrine and terephthaldicarboxaldehyde to get (3) which were reacted with mercaptoacetic acid , glycine or chloroacetyl chloride separately to get com
... Show More