The focus of this article, reviewed a generalized of contraction mapping and nonexpansive maps and recall some theorems about the existence and uniqueness of common fixed point and coincidence fixed-point for such maps under some conditions. Moreover, some schemes of different types as one-step schemes ,two-step schemes and three step schemes (Mann scheme algorithm, Ishukawa scheme algorithm, noor scheme algorithm, .scheme algorithm, scheme algorithm Modified scheme algorithm arahan scheme algorithm and others. The convergence of these schemes has been studied .On the other hands, We also reviewed the convergence, valence and stability theories of different types of near-plots in convex metric space.
Chaotic systems have been proved to be useful and effective for cryptography. Through this work, a new Feistel cipher depend upon chaos systems and Feistel network structure with dynamic secret key size according to the message size have been proposed. Compared with the classical traditional ciphers like Feistel-based structure ciphers, Data Encryption Standards (DES), is the common example of Feistel-based ciphers, the process of confusion and diffusion, will contains the dynamical permutation choice boxes, dynamical substitution choice boxes, which will be generated once and hence, considered static,
While using chaotic maps, in the suggested system, called
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Let f and g be a self – maps of a rational exterior space . A natural number m is called a minimal coincidence period of maps f and g if f^m and g^m have a coincidence point which is not coincidence by any earlier iterates. This paper presents a complete description of the set of algebraic coincidence periods for self - maps of a rational exterior space which has rank 2 .
In this paper We introduce some new types of almost bi-periodic points in topological bitransfprmation groups and thier effects on some types of minimaliy in topological dynamics
ABSTRACT Background:- White spot lesions are common esthetic problem that compromise the success of orthodontic treatment. This study aimed to assess white spot lesions in patients with fixed orthodontic appliance at different time intervals. Materials & Methods:- Thirty two patients (24 females and 8 males) were included in this study and they underwent clinical examination for white spot lesions using enamel decalcification index at four time intervals: (2-3 weeks after appliance insertion, 2, 4 and 6 months). Results:- The patients were free of white spot lesions at the appliance insertion visit. The mean of white spot lesions was 2.22 which were increased significantly during six months to reach 24.59 at the end of study. There was a si
... Show MoreThe estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of t
... Show MoreDue to the importance of nanotechnology because of its features and applications in various fields, it has become the focus of attention of the world and researchers. In this study, the concept of nanotechnology and nanomaterials was identified, the most important methods of preparing them, as well as the preparation techniques and the most important devices used in their characterization.