This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for optimality (NCSO) theorems for the proposed problem are stated and proved.
Recently there has been an urgent need to identify the ages from their personal pictures and to be used in the field of security of personal and biometric, interaction between human and computer, security of information, law enforcement. However, in spite of advances in age estimation, it stills a difficult problem. This is because the face old age process is determined not only by radical factors, e.g. genetic factors, but also by external factors, e.g. lifestyle, expression, and environment. This paper utilized machine learning technique to intelligent age estimation from facial images using support vector machine (SVM) on FG_NET dataset. The proposed work consists of three phases: the first phase is image preprocessing include four st
... Show MoreCopulas are simply equivalent structures to joint distribution functions. Then, we propose modified structures that depend on classical probability space and concepts with respect to copulas. Copulas have been presented in equivalent probability measure forms to the classical forms in order to examine any possible modern probabilistic relations. A probability of events was demonstrated as elements of copulas instead of random variables with a knowledge that each probability of an event belongs to [0,1]. Also, some probabilistic constructions have been shown within independent, and conditional probability concepts. A Bay's probability relation and its pro
... Show MoreIn this paper, a microcontroller-based electronic circuit have been designed and implemented for dental curing system using 8-bit MCS-51 microcontroller. Also a new control card is designed while considering advantages of microcontroller systems the time of curing was controlled automatically by preset values which were input from a push-button switch. An ignition based on PWM technique was used to reduce the high starting current needed for the halogen lamp. This paper and through the test result will show a good performance of the proposed system.
The method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta meth
... Show MoreThe aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.
Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.
We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).
The results proved that the (ANN) estimator is the best nonlinear estimator am
... Show MoreIn this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.
In this paper, cubic trigonometric spline is used to solve nonlinear Volterra integral equations of second kind. Examples are illustrated to show the presented method’s efficiency and convenience.
This study aimed to determine the optimal conditions for extracting basil seed gum in addition to determine the chemical components of basil seeds. Additionally, the study aimed to investigate the effect of the mixing ratio of gum to ethanol when deposited on the basis of the gum yield which was1:1, 1:2, 1:3 (v/v) respectively. The best mixing ratio was one size of gum to two sizes of ethanol, which recorded the highest yield. Based on the earlier, the optimal conditions for extracting basil seed gum in different levels which included pH, temperature, mixing ratio seeds: water and the soaking duration were studied. The optimal conditions were: pH 8, temperature of 60°C, mixing ratio seeds: water 1:65 (w/v) and soaking duration of 30 min
... Show MoreIn this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for tw
... Show More