Preferred Language
Articles
/
jih-2963
Improved Runge-Kutta Method for Oscillatory Problem Solution Using Trigonometric Fitting Approach
...Show More Authors

This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions  and   for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency  is used. The novel method is more accurate than the conventional Runge-Kutta method and IRK4. Several test problems for the system of first-order ordinary differential equations carry out numerically to demonstrate the effectiveness of this approach. The computational studies show that the TFIRK4 approach is more efficient than the existing Runge-Kutta methods.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 01 2018
Journal Name
Polyhedron
Novel dichloro (bis {2-[1-(4-methylphenyl)-1H-1, 2, 3-triazol-4-yl-κN3] pyridine-κN}) metal (II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)
...Show More Authors

Preview PDF