In this paper, we have generalized the concept of one dimensional Emad - Falih integral transform into two dimensional, namely, a double Emad - Falih integral transform. Further, some main properties and theorems related to the double Emad - Falih transform are established. To show the proposed transform's efficiency, high accuracy, and applicability, we have implemented the new integral transform for solving partial differential equations. Many researchers have used double integral transformations in solving partial differential equations and their applications. One of the most important uses of double integral transformations is how to solve partial differential equations and turning them into simple algebraic ones. The most important partial differential equations are Laplace, Poisson, wave, heat, telegraph, and other equations. A new Double Emad -Falih integral transform denoted by the operator , the transform form is as follows:
چکیدهی بحث
به نظر میآید که عالم هستی ، بر مسألهی « حرکت» استوار دارد ، و روح ، همیشه دنبال دگرگونی و تکامل و برتری میگردد. حرکت ، همهی چیزها در عالم إمکان را در بر میگیرد. حرکت در بنیادهای فکر مولانا جای مهمی دارد .اشعار مولانا مقدار زیادی از پویایی و حرکت برخوردارست، و از آنجایی که فعل ، عنصر تکانبخش جمله ، و کانون دلالت است ، ترجیح دادیم - علاوه بر دیگر عنا
... Show MoreThe comparison of double informative priors which are assumed for the reliability function of Pareto type I distribution. To estimate the reliability function of Pareto type I distribution by using Bayes estimation, will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of Pareto type I distribution . Assuming distribution of three double prior’s chi- gamma squared distribution, gamma - erlang distribution, and erlang- exponential distribution as double priors. The results of the derivaties of these estimators under the squared error loss function with two different double priors. Using the simulation technique, to compare the performance for
... Show More