Ytterbium-doped (Y2O3), (Sc2O3) and (YAG) crystals are very important for high-power thindisk lasers. These lasers have shown their ability to operate quasi-three-level materials with high
efficiency as well as high thermal conductivity ratio for crystalline hosts. All these reasons have
required studying this type of laser. In the present work, the analytical solution was found for the
equation of laser output power, pumping threshold power, and efficiency of a quasi-three-level
thin disk laser. The numerical solution of these equations was also found through the Matlab
program at the fundamental transverse mode, at a temperature of 299K0
and with high pumping
capabilities in order to know the effect of the type of crystal host (YAG, Sc2O3,Lu2O3) on the laser
production of this design and thermal effect when operating continuously. We found out that the
crystal host (Lu2O3) was the best type of these hosts in obtaining the highest laser output power
and efficiency at all values of pumping power
The present study investigates the main parameters effect on the solenoid design as converging lens of charged particle beam passing through it. These parameters are solenoid magnetic field (B), solenoid radius (Ro) and the solenoid total length (L). The result indicates that the solenoid system is very sensitive to the change of these parameters. The solenoid acts as converge lens but may convert to diverging lens at some conditions. The best design obtained at (L=1100 mm, B=5000 gauss and Ro=150 mm).
The reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show MoreThe preparation and spectral characterization of complexes for Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) ions with new organic heterocyclic azo imidazole dye as ligand 2-[(2`-cyano phenyl) azo ]-4,5-diphenyl imidazole ) (2-CyBAI) were prepared by reacting a dizonium salt solution of 2-cyano aniline with 4,5-diphenyl imidazole in alkaline ethanolic solution .These complexes were characterized spectroscopically by infrared and electronic spectra along with elemental analysis‚ molar conductance and magnetic susceptibility measurements. The data show that the ligand behaves a bidantate and coordinates to the metal ion via nitrogen atom of azo and with imidazole N3 atom. Octahedral environment is suggested for all metal complex
... Show MoreAn indirectly method is used to determine hydrogen peroxide. The method based on oxidation of chromium (III) ion by hydrogen peroxide in basic medium to form chromate ion which react with barium (II) ion to produce a yellow precipitate (BaCrO4). Under the optimum established conditions, the linear range of 0.50-25.00 mmol L-1 along with correlation coefficient (r) of 0.9992, Limit of detection (LOD) 0.68 μg / 100 μL, precision expressed as relative standard deviation for six replication measurements at 5.0 mmol.L-1 H2O2 of less than 2% were obtained for hydrogen peroxide. The developed method was successfully applied for the estimation of H2O2 in three pharmaceuticals preparation of different companies using continuous flow injection o
... Show MoreThe present work includes design, construction and operates of a prototype solar absorption refrigeration system, using methanol as a refrigerant to avoid any refrigerant that cause global warming and greenhouse effect. Flat plate collector was used because it’s easy, ninexpensive and efficient. Many test runs (more than 50) were carried out on the system from May to October, 2013; the main results were taken between the period of July 15, 2013 to August 15, 2013 to find the maximum C.O.P, cooling, temperature and pressure of the system. The system demonstrates a maximum generator temperature of 93.5 oC, on July 18, 2013 at 2:30 pm, and the average mean generator temperature Tgavr was 74.7 °C, for this period. The maximum pressure Pg
... Show MoreIn this work, an experimental analysis is made to predict the thermal performance of the natural-convection phenomenon from a heated vertical externally finned-tube to surrounding air through an open-ended enclosure. Two different configurations of longitudinal rectangular fin namely, continuous and interrupted are utilized with constant thickness, different numbers, and different heights are extended radially on the outer surface of a heated tube. The tube is heated electrically from inner surface with five varied power input magnitudes. The effect of fins configuration, fins number, fins height, and heat flux of the inner tube surface on the thermal performance of natural c
... Show MoreAll-optical canonical logic units at 40 Gb/s using bidirectional four-wave mixing (FWM) in highly nonlinear fiber are proposed and experimentally demonstrated. Clear temporal waveforms and correct pattern streams are successfully observed in the experiment. This scheme can reduce the amount of nonlinear devices and enlarge the computing capacity compared with general ones. The numerical simulations are made to analyze the relationship between the FWM efficiency and the position of two interactional signals. © 2015 Chinese Laser Press
The Maxwell equations have been formulated for a composite slab waveguide at x-band wave propagation. The eigenvalues of the system equations are obtained by using MATLAB program. These eigenvalues are used to obtain the wave propagation constant and a number of modes inside the slabs. A good correspondence was seen between the number of modes and the cut off thickness. The parameter that affects the performance of waveguide is the slab thickness. The propagation constant is usually adopted to characterize this type of waveguide and show how the cutoff frequency of the mode in the slab is increased dramatically by decreasing the frequency.
Our study focused on lower modes, the results for the transmission coefficient are then used to
In this work, We introduce the concepts of an FP-Extending, FP-Continuous and FP-Quasi-Continuous which are stronger than P-Extending, P-Continuous and P-Quasi-Continuous. characterizations and properties of FP-Extending, FP-Continuous and FP-Quasi-Continuous are obtained . A module M is called FP-Extending ( FP-Continuous, FP-Quasi-Continuous) if every submodule is P-Extending (P-Continuous, P-Quasi-Continuous) .
In this paper, an analytical solution describing the deflection of a cracked beam repaired with piezoelectric patch is introduced. The solution is derived using perturbation method. A novel analytical model to calculate the proper dimensions of piezoelectric patches used to repair cracked beams is also introduced. This model shows that the thickness of the piezoelectric patch depends mainly on the thickness of the cracked beam, the electro-mechanical properties of the patch material, the applied load and the crack location. Furthermore, the model shows that the length of the piezoelectric patches depends on the thickness of the patch as well as it depends on the length of the cracked beam and the crack depth. The additio
... Show More