Ytterbium-doped (Y2O3), (Sc2O3) and (YAG) crystals are very important for high-power thindisk lasers. These lasers have shown their ability to operate quasi-three-level materials with high
efficiency as well as high thermal conductivity ratio for crystalline hosts. All these reasons have
required studying this type of laser. In the present work, the analytical solution was found for the
equation of laser output power, pumping threshold power, and efficiency of a quasi-three-level
thin disk laser. The numerical solution of these equations was also found through the Matlab
program at the fundamental transverse mode, at a temperature of 299K0
and with high pumping
capabilities in order to know the effect of the type of crystal host (YAG, Sc2O3,Lu2O3) on the laser
production of this design and thermal effect when operating continuously. We found out that the
crystal host (Lu2O3) was the best type of these hosts in obtaining the highest laser output power
and efficiency at all values of pumping power
In this paper, a new class of sets, namely ï¡- semi-regular closed sets is introduced and studied for topological spaces. This class properly contains the class of semi-ï¡-closed sets and is property contained in the class of pre-semi-closed sets. Also, we introduce and study ï¡srcontinuity and ï¡sr-irresoleteness. We showed that ï¡sr-continuity falls strictly in between semi-ï¡- continuity and pre-semi-continuity.
In this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented
This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for
... Show MoreSignificant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials. Motivated by the prediction and enhanced understanding of the behavior of two-dimensional (2D) bilayers (BL) of zirconium diselenide (ZrSe2), hafnium diselenide (HfSe2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the
The recurrent somatic variations in
The aim of the study was to detect the frequency of R132 mutations in the
This work is concerned with studying the solvability for optimal classical continuous control quaternary vector problem that controls by quaternary linear hyperbolic boundary value problem. The existence of the unique quaternary state vector solution for the quaternary linear hyperbolic boundary value problem is studied and demonstrated by employing the method of Galerkin, where the classical continuous control quaternary vector is Known. Also, the existence theorem of an optimal classical continuous control quaternary vector related to the quaternary linear hyperbolic boundary value problem is demonstrated. The existence of a unique solution to the adjoint quaternary linear hyperbolic boundary value problem a
... Show MoreWe introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
Arabic calligraphy is one of the ancient arts rooted in history, And that he grew up conflicting views and writings addressed as a, communication tool for the linguistic The teaching calligraphy note an art and science because it depends on the fixed assets and precise rules in his art because centered Beauty It targets teach Arabic calligraphy speed as the education and recitation helps to write fast Which have great interest in the field of education and in life both Also accompanied Arabic calligraphy and scientific renaissance significant knowledge in the Ara
... Show MoreIn recent years, there is more interest in water sources availability, including groundwater due to an increase in demand for water because of the increasing population in the world, and the water recedes due to climate change also. Therefore, the study of groundwater has required more attention. The aim of the present study is to establish a MODFLOW model in the groundwater modeling system software to simulate the movement of groundwater in the Turssaq alluvial fan which is located in the Qazaniyah city, east of Diyala Governorate. The solid model was used to define the aquifer in the study area. Using the GIS software, mapping and preparing the data needed to create a conceptual model were carried out. The data of the
... Show MoreThe objective of this paper is to show modern class of open sets which is an -open. Some functions via this concept were studied and the relationships such as continuous function strongly -continuous function -irresolute function -continuous function.